情报科学 ›› 2023, Vol. 41 ›› Issue (11): 128-133.

• 业务研究 • 上一篇    下一篇

基于评论信息的网络购物用户兴趣画像研究

  

  • 出版日期:2024-02-29 发布日期:2024-03-01

  • Online:2024-02-29 Published:2024-03-01

摘要:

【目的/意义】通过评论信息发现用户兴趣,以便为用户提供个性化的商品推荐等服务。【方法/过程】以淘宝
网化妆品评论信息为研究对象,建立用户兴趣字典,按商品的价值属性确定用户画像维度,并进行用户兴趣画像分
析。用户兴趣词典的建立过程:首先利用ROST CM 6软件对评论信息分词和去停词;然后采用词频分析方法挖掘
兴趣词汇;最后借助知网发布的“情感分析用词语集(beta版)”建立词典。用户画像分析是基于用户兴趣字典,采用
情感分析、标签云和语义网络分析等多种工具完成。【结果/结论】论文实证研究结论可做为产品推荐的根据,基于
评论信息的用户画像方法可为网络其他商品用户画像。【创新/局限】用户兴趣词典是本论文的创新之处;论文分析
工具的选择充分考虑了不同软件分析工具的优势和局限,是本文数据分析工具应用的探索。但基于用户兴趣画像
的个性化商品推送算法研究尚未进行,是本文的不足之处。

Abstract:

【Purpose/significance】The purpose of online shopping user interest portrait based on review information is to find the user
interest through user review information, so as to provide users with personalized product recommendation,etc..【
Method/process】This paper takes the evaluation of cosmetics on Taobao as the research object. Build a dictionary of user interests dictionary. Determine the user portrait dimension by the value attribute of the commodity, and do user interest profile analysis. The process of establishing a dic⁃tionary of user interests: First of all, the ROST CM 6 software is used to process the comment information to find word segmentation and delete the stop word. Then the word frequency analysis method is used to mine the vocabulary of interest. Finally, a dictionary was established with the "Vocabulary for Emotion Analysis (beta)" published by CNKI.【Result/conclusion】User portrait analysis is based on the user interest dictionary, and uses many tools and methods, such as emotion analysis technology, TAG Cloud and semantic net⁃work analysis technology, etc..【Innovation/limitation】 User Interest Dictionary is the innovation of this paper. The selection of soft⁃ware tools fully considers the advantages and limitations of different software tools and dictionaries. It is an exploration how to use data analysis tools. The algorithm based the user's interest profile is not done that push the goods to the individual users. It is a deficiency of this article.