情报科学 ›› 2023, Vol. 41 ›› Issue (11): 134-140.

• 业务研究 • 上一篇    下一篇

基于显隐式反馈的个人信息隐私保护方法

  

  • 出版日期:2024-02-29 发布日期:2024-03-01

  • Online:2024-02-29 Published:2024-03-01

摘要:

【目的/意义】针对现有个人信息隐私保护方法未考虑隐式反馈数据,造成隐私保护效果低的问题,研究基
于显隐式反馈的个人信息隐私保护方法,通过利用显隐式反馈信息,有效解决网络中包含个人信息的隐私保护问
题。【方法/过程】首先根据提取规则提取个人信息,并将其保存至数据库中。然后,建立融合显隐式反馈数据的矩
阵分解模型,利用EifSVD算法对隐式反馈矩阵进行分解。将特征向与显式反馈模型结合,实现了矩阵分解的模型
求解。最后,利用个人隐私保护方案,完成矩阵分解模型求解结果的加密保护,利用基于差分隐私算法的目标函数
扰动策略对个人隐私信息进行保护。【结果/结论】实验结果表明,该方法充分考虑了用户的隐式反馈数据,具有较
高的安全性与可靠性,提升了个人信息隐私保护性能,可以保证个人信息隐私数据在服务端传输信息时的安全性,
同时不影响网络传输性能以及数据查询效率。【创新/局限】但因本文中的实验案例较单一,因此研究结果仍存在一
定局限性,后期将结合不同案例对所提出的个人信息隐私保护方法进行验证,保证方法的准确性。

Abstract:

【Purpose/significance】 Aiming at the problem that the existing privacy protection methods of personal information do not
consider implicit feedback data, resulting in low privacy protection effect, this paper studies the privacy protection method of personal information based on explicit and implicit feedback, effectively solves the privacy protection problem of personal information con⁃tained in the network by using explicit and implicit feedback information.【Method/process】 First, extract personal information accord⁃ing to the extraction rules and save it in the database. Then, a matrix decomposition model integrating explicit and implicit feedback data is established, and the implicit feedback matrix is decomposed using EifSVD algorithm. Combining the eigendirection with the ex⁃plicit feedback model, the model solution of matrix decomposition is realized. Finally, the privacy protection scheme is used to com⁃plete the encryption protection of the solution of the matrix decomposition model, and the objective function perturbation strategy based on the differential privacy algorithm is used to protect personal privacy information.【Result/conclusion】 The experimental re⁃sults show that the method fully considers the implicit feedback data of users, has high security and reliability, improves the perfor⁃mance of personal information privacy protection, and can ensure the security of personal information privacy data when transmitting information on the server, without affecting the network transmission performance and data query efficiency.【Innovation/limitation】However, due to the relatively single experimental case in this article, the research results still have certain limitations. In the later stage, the proposed personal information privacy protection method will be verified by combining different cases to ensure the accuracyof the proposed method.