摘要: 【目的/意义】分析网民在突发公共卫生事件中的情感演化历程,探究影响网民情感波动的因素及其时空演
化的差异。【方法/过程】运用Python爬取微博新冠疫情相关文本数据315 445条,基于SnowNLP情感分析工具对数
据文本进行情感分析。使用TF-IDF及LDA主题模型进行建模,对不同阶段及不同群体的舆情时空演化及差异进
行内容分析。【结果/结论】网民的情感演化呈现阶段性和群体性差异,尽管整体为积极态势,但疫情上升期为负面
情绪集中爆发期;网民群体中受教育程度较低的群体情感波动幅度更大,更容易受到舆论的影响,舆情演化更易极
化;中心大城市情感波动相对稳定,而引起其他区域网民消极情绪的往往不是疫情本身,而是由疫情引发的负面舆
论;普通网民群体较于高影响力群体在舆情演化阶段的负面情绪更为严重,情感演化在各阶段呈现明显的涟漪效
应,需在不同阶段针对不同群体制定有效的舆情引导政策。【创新/局限】本文将整个语料库划分为50多个小语料,
个别语料文本数据量较少,具有一定的局限性。