情报科学 ›› 2022, Vol. 40 ›› Issue (6): 160-168.

• 博士论坛 • 上一篇    下一篇

基于大规模数据分析的融合面部特征的信用风险预测模型 

  

  • 出版日期:2022-06-01 发布日期:2022-06-12

  • Online:2022-06-01 Published:2022-06-12

摘要: 【目的/意义】个人违约信用风险是网络借贷平台所面临的主要风险之一,引起了金融机构的广泛重视。传
统的
P2P网络借贷违约风险预测模型通常使用历史数据建模,而模型的对象主要为历史履约和违约因素,由此带来
的因素选择偏差问题会影响模型的泛化能力和风险预测能力。【方法
/过程】本文引入面部特征大数据分析方法,利
用深度学习技术自动抽取人脸面部特征变量,将其作为一个新的维度融入以历史借贷数据为核心的信用风险评价
系统,建构新型信用风险预测模型。【结果
/结论】论文基于南京某互联网金融公司提供的数据集进行实验与实证分
析,结果表明本文提出的模型优于传统的违约风险预测模型。【创新
/局限】本研究的创新点为一方面基于大数据分
析方法挖掘了真实借款人面部特征在预测互联网信贷背景下的贷款违约中的作用,为互联网信贷的信用风险预测
模型提供了新的数据维度,另一方面为使用深度学习方法自动识别和提取大规模图片数据集中的面部特征提供了
新的思路。

Abstract: Purpose/significancePersonal default credit risk is one of the main risks faced by online lending platforms,which has at⁃tracted extensive attention from financial institutions.Traditional P2P network lending default risk prediction models usually use histor⁃ical data for modeling,and the objects of the model are mainly historical performance and default factors.The resulting factor selection bias will affect the generalization ability and risk prediction ability of the model. Method/processThis paper introduces facial feature big data analysis method,uses deep learning technology to automatically extract facial feature variables,integrates it as a new dimen⁃sion into the credit risk evaluation system with historical loan data as the core,and constructs a new type of credit risk prediction model.
Result/conclusionThe thesis conducts experiments and empirical analysis based on the data set provided by an internet finance com⁃pany in Nanjing,and the results show that the model proposed in this paper is better than the traditional default risk prediction model.Innovation/limitationThe innovation of this research is that,on the one hand,the role of real borrowers' facial features in predicting loan defaults in the context of Internet credit based on big data analysis methods has been excavated,providing a new data dimension for the Internet credit risk prediction model,and on the other This aspect provides new ideas for using deep learning methods to auto⁃matically recognize and extract facial features in large-scale image data sets.