摘要: 【目的/意义】基于社交媒体用户分享的图像、博文及用户标签数据,为用户推荐潜在的好友,从而更好的为 用户做个性化推荐和精准化服务。【方法/过程】在获取微博用户分享的图像、博文及用户标签的基础上,通过使用 深度学习的方法利用图像、博文及用户标签数据来表达用户兴趣特征,基于这三类特征组合,通过计算用户之间的 余弦相似度来挖掘与目标用户兴趣最相近的若干个候选用户。同时,探讨了多模数据在无监督学习下的用户推荐 问题,并与单模数据进行比较。【结果/结论】实验结果表明,利用图像、博文和用户标签合成的多模数据对用户的兴 趣进行建模并进行好友推荐较单模数据效果好。