|
|
大模型驱动档案开放智能审核方法研究:动因、框架与实践 |
刘力超1,2,陈晓珑1,牛力1 |
1 中国人民大学信息资源管理学院 北京 100872 2 中国人民大学档案事业发展研究中心 北京 100872 |
|
Study on LLM-driven Intelligent Appraisal Methods for Archives Opening: Motivation, Framework and Practice |
Lichao Liu1,2,Xiaolong Chen1,Li Niu1 |
1 School of Information Resource Management, Renmin University of China, Beijing 100872 2 Archival Undertaking Development Research Center, Renmin University of China, Beijing 100872 |
[1] | 卢祥娣. 档案划控开放工作若干问题与思考[J]. 档案与建设, 2013(S1):18-19. | [2] | ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[DB/OL].[2024-09-28]. https://arxiv.org/abs/2303.18223. | [3] | 牛力, 金持, 黎安润泽. 大模型在档案工作数智转型中的应用:新机遇、新模式和新转变[J]. 档案学通讯, 2024(6):30-38. | [4] | 聂博馨, 曹月. 利用人工智能及自然语言技术辅助档案分级开放审核研究[J]. 黑龙江档案, 2024(2):14-17. | [5] | 刘丽, 王兆伟, 张明智, 等. 生成式人工智能对档案工作的影响—从ChatGPT谈起[J]. 浙江档案, 2023(9):47-50. | [6] | 刘越男, 张茜雅, 杨建梁. 大语言模型在档案开放审核中的应用框架与路径探究[J/OL]. 档案学通讯. https://doi.org/10.16113/j.cnki.daxtx.20240923.001. | [7] | 杨扬, 孙广辉, 韩先吉. 敏感词全文比对在档案开放审核中的应用实践[J]. 中国档案, 2020(11):58-59. | [8] | 王楠, 丁原, 李军. 语义层次网络在文书档案开放审核中的应用[J]. 档案与建设, 2022(6):55-60. | [9] | 李军, 徐志国, 王楠. 智能语义助推档案开放审核的研究与实践[J]. 中国档案, 2023(11):56-57. | [10] | 黄建峰, 颜梓森, 张枫旻, 等. 福建:运用人工智能技术搭建开放审核模型[J]. 中国档案, 2023(7):27-29. | [11] | 毛海帆, 李鹏达, 傅培超, 等. 基于数据挖掘技术构建辅助档案开放鉴定模型[J]. 中国档案, 2022(12):29-31. | [12] | 陈茜月. 基于神经网络的档案开放鉴定智能模型研究[J]. 档案管理, 2022(5):56-57. | [13] | 殷名, 聂云霞, 李家霖. 基于神经语义分析的档案智能开放鉴定模型构建探析[J]. 档案学刊, 2022(2):46-55. | [14] | 李轶昶, 林空. “数智”为目标的数字档案馆迭代升级实践—以浙江省档案馆为例[J]. 浙江档案, 2023(5):13-15. | [15] | 福建省档案局、 档案馆项目组. 基于数字档案的人工智能辅助档案开放审核系统实现研究[J]. 浙江档案, 2022(10):40-43. | [16] | 安徽省档案馆课题组. 人工智能技术在档案划控上的应用研究[J]. 中国档案, 2024(5):64-65. | [17] | 罗人芳. 档案开放鉴定系统全程管理及应用实践研究[J]. 中国档案, 2023(11):54-55. | [18] | 周友泉, 连波, 曹军. “浙里数字档案”重大应用场景实践—“档案AI辅助开放审核”组件的性能与应用[J]. 浙江档案, 2022(11):22-24. | [19] | 卞咸杰. 基于智能工作流技术的档案开放审核系统设计与实现[J]. 档案管理, 2023(6):84-87. | [20] | SÁNCHEZ D, BATET M, VIEJO A. Detecting sensitive information from textual documents: an information-theoretic approach[C]// TORRA V, NARUKAWA Y, LÓPEZ B, et al. Modeling Decisions for Artificial Intelligence. MDAI 2012. Springer, 2012:173-184. | [21] | MCDONALD G, MACDONALD C, OUNIS I, et al. Towards a classifier for digital sensitivity review[C]// RIJKE M, KENTER T, VRIESET A P, et al. Advances in Information Retrieval. ECIR 2014. Springer, 2014:500-506. | [22] | SOUZA R R, COELHO F C, SHAH R, et al. Using artificial intelligence to identify state secrets[DB/OL].[2024-09-28]. https://arxiv.org/abs/1611.00356. | [23] | JUEZ-HERNANDEZ R, QUIJANO-SÁNCHEZ L, LIBERATORE F, et al. AGORA: an intelligent system for the anonymization, information extraction and automatic mapping of sensitive documents[J]. Applied Soft Computing, 2023, 145: 1-11. | [24] | CHAKARAVARTHY V T, GUPTA H, ROY P, et al. Efficient techniques for document sanitization[C]// CIKM '08: proceedings of the 17th ACM conference on information and knowledge management. New York: ACM, 2008:843-852. | [25] | ABRIL D, NAVARRO-ARRIBAS G, TORRA V. On the declassification of confidential documents[C]// Modeling Decision for Artificial Intelligence. MDAI 2012. Springer, 2011:235-246. | [26] | MCDONALD G, MACDONALD C, OUNIS I. How the accuracy and confidence of sensitivity classification affects digital sensitivity review[J]. ACM Transactions on Information Systems, 2020(1):1-34. | [27] | MCDONALD G, MACDONALD C, OUNIS I. Towards maximising openness in digital sensitivity review using reviewing time predictions[C]// Advances in Information Retrieval. ECIR 2018. Springer, 2018:699-706. | [28] | 张梦怡. 馆藏档案开放审核新路径研究[J]. 浙江档案, 2023(9):51-53,57. | [29] | 谢永宪, 王巧玲, 刘湘娟, 等. 我国档案开放审核工作调研与分析[J]. 山西档案, 2023(5):156-164. | [30] | [46] 国家档案局. 2023年度全国档案主管部门和档案馆基本情况摘要[EB/OL].[2024-09-23]. https://www.saac.gov.cn/daj/zhdt/202409/fd579fbcb59f4f4eae534495f2170849.shtml. | [31] | 林红. 全省市、县国家综合档案馆档案开放审核工作调研报告[J]. 四川档案, 2023(4):11-12. | [32] | 聂博馨, 邱文昱. 档案开放审核工作开展现状及发展路径研究—以黑龙江省档案开放审核工作为例[J]. 黑龙江档案, 2023(6):17-20. | [33] | 范苗苗. 浅谈如何做好县级档案馆档案开放工作[J]. 山东档案, 2023(5):52-53. | [34] | 潘裕骏. 关于档案开放审核工作的若干思考—以长三角地区省级国家综合档案馆为例[J]. 浙江档案, 2022(9):51-53. | [35] | 于海娟. AI赋能:探索人工智能在档案开放审核中的应用[J]. 档案天地, 2024(7):22-24. | [36] | 刘金霞. 试论档案开放审核人才队伍的建设策略[J]. 四川档案, 2024(3):35-37. | [37] | 马凤云, 马秀艳. 贯彻《国家档案馆档案开放办法》提高新时代档案开放工作水平[J]. 中国档案, 2023(4):32-33. | [38] | NAVEED H, KHAN A U, QIU S, et al. A comprehensive overview of large language models[DB/OL].[2024-10-05]. https://arxiv.org/abs/2307.06435. | [39] | HADI M U, QURESHI R, SHAH A, et al. A survey on large language models: applications, challenges, limitations, and practical usage[DB/OL].[2024-11-10]. https://www.techrxiv.org/doi/full/10.36227/techrxiv.23589741.v1. | [40] | SINGHAL K, AZIZI S, TU T, et al. Large language models encode clinical knowledge[DB/OL].[2024-10-06]. https://arxiv.org/abs/2212.13138. | [41] | CUI J, LI Z, YAN Y, et al. Chatlaw: open-source legal large language model with integrated external knowledge bases[DB/OL].[2024-10-06]. https://openreview.net/forum?id=Cjas49BCAf. | [42] | WU S, IRSOY O, LU S, et al. Bloomberggpt: a large language model for finance[DB/OL].[2024-10-17]. https://arxiv.org/abs/2303.17564. | [43] | SILVA B, NUNES L, ESTEVÃO R, et al. GPT-4 as an agronomist assistant? answering agriculture exams using large language models[DB/OL].[2024-11-19]. https://arxiv.org/abs/2310.06225. | [44] | TAYLOR R, KARDAS M, CUCURULL G, et al. Galactica: a large language model for science[DB/OL].[2024-10-19]. https://arxiv.org/abs/2211.09085. | [45] | BI K, XIE L, ZHANG H, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619: 533-538. | [47] | OpenAI. Learning to reason with LLMs[EB/OL].[2024-09-25]. https://openai.com/index/learning-to-reason-with-llms/. | [48] | MINAEE S, MIKOLOV T, NIKZAD N, et al. Large language models: a survey[DB/OL].[2024-11-20]. https://arxiv.org/abs/2402.06196. | [49] | 杨瑞仙, 李兴芳, 王栋, 等. 隐私计算的溯源、现状及展望[J]. 情报理论与实践, 2023(7):158-167. | [50] | 张斌, 高晨翔, 牛力. 对象、结构与价值:档案知识工程的基础问题探究[J]. 档案学通讯, 2021(3):18-26. | [51] | HU Z, WANG L, LAN Y, et al. Llm-adapters: an adapter family for parameter-efficient fine-tuning of large language models[DB/OL].[2024-10-20]. https://arxiv.org/abs/2304.01933. | [52] | ZHANG N, YAO Y, TIAN B, et al. A comprehensive study of knowledge editing for large language models[DB/OL].[2024-10-20]. https://arxiv.org/abs/2401.01286. | [53] | ZHANG N, TIAN B, CHENG S, et al. InstructEdit: instruction-based knowledge editing for large language models[DB/OL].[2024-10-21]. https://arxiv.org/abs/2402.16123. | [54] | Daniel K. Thinking, fast and slow[M]. New York: Farrar, Straus and Giroux, 2017:4. | [55] | SUN J, ZHENG C, XIE E, et al. A survey of reasoning with foundation models[DB/OL].[2024-10-22]. https://arxiv.org/abs/2312.11562. | [56] | 施浩然, 吕元智. 我国档案开放智能审核问题与优化策略研究[J]. 山西档案, 2024(6):20-26. | [57] | 王巧玲, 王欣. 档案开放审核的结果及其标注问题探究[J]. 北京档案, 2023(12):11-14. | [58] | MUENNIGHOFF N, WANG T, SUTAWIKA L, et al. Crosslingual Generalization through Multitask Finetuning[DB/OL].[2024-10-22]. https://arxiv.org/abs/2211.01786. |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|