Please wait a minute...
档案学研究  2017, Vol. 31 Issue (6): 93-98    DOI: 10.16065/j.cnki.issn1002-1620.2017.06.017
  档案信息化 本期目录 | 过刊浏览 |
数字档案馆中视频档案检索框架构建及实现
徐彤阳1,2, 张国标1, 任浩然1
1山西财经大学 太原 030006
2中国科学院科技文献情报中心 北京 100190
The Structure and Implementation of Video Archives Retrieval Framework in Digital Archives
Tongyang XU1,2, Guobiao ZHANG1, Haoran REN1
1 Shanxi University of Finance and Economics,Taiyuan 030006
2 National Science Library of Chinese Academy of Science,Beijing 100190
全文: HTML    PDF(1061 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

数字档案馆建设的不断推进,视频档案的数量在急剧增加,视频档案作为档案资料重要组成部分——视频档案的检索成为了数字档案馆建设亟须解决的问题。针对该问题提出了一种基于Contourlet变换的视频检索框架。该方法首先提取视频关键帧,然后对视频关键帧进行3层Contourlet分解,对各高频方向子带求均值和标准差,生成关键帧的特征向量,再计算所有关键帧特征向量的均值生成视频特征,最后利用欧式距离来度量视频的相似度。实验结果证明该方法比小波变换具有更好的综合性能,对于加边框、添加图标、添加字幕、改变比率、镜像、丢帧和噪声等攻击具有较好的鲁棒性。

Abstract

As more and more video archives are collected in digital archives,how to retrieve the video that user needs from the massive video archives quickly and accurately has become a problem to be solved in digital archives. Considering this question,a novel video retrieval framework based on Contourlet transform is proposed. First,we extracted key frame from the video,then decomposed video key frames by Contourlet transform and constructed feature vectors by calculating the mean and variance of high-frequency sub-bands. After that,we constructed the video fingerprint by calculating the mean of all key frames feature vectors. Finally,the similarities of videos were computed by the Euclidean’s distance. The experiments show that this scheme is robust to edging,logo insertion,text insertion,ratio,mirroring,drop frames and noise.

出版日期: 2018-09-09
引用本文:

徐彤阳, 张国标, 任浩然. 数字档案馆中视频档案检索框架构建及实现[J]. 档案学研究, 2017, 31(6): 93-98.
Tongyang XU, Guobiao ZHANG, Haoran REN. The Structure and Implementation of Video Archives Retrieval Framework in Digital Archives. Archives Science Study, 2017, 31(6): 93-98.

链接本文:

http://journal12.magtechjournal.com/Jwk_dax/CN/10.16065/j.cnki.issn1002-1620.2017.06.017      或      http://journal12.magtechjournal.com/Jwk_dax/CN/Y2017/V31/I6/93

[1] 汤海萍. 基于时空信息表达的视频拷贝检测[D]. 北京:北京交通大学,2014.
[2] 李熙利. 数字档案馆多媒体检索系统实现分析[J]. 北京档案,2012(12):30-31.
[3] 徐彤阳,张国标. 数字图书馆中基于内容的视频拷贝检测关键技术研究[J]. 现代情报,2016,36(2):135-139.
[4] Candela,L.,D. Castelli,P. Pagano, et al. Setting the Foundations of Digital Libraries[J]. D-Lib Magazine,2007(13):3-4.
[5] 徐彤阳,张国标. 数字图书馆中基于内容的视频拷贝检测关键技术研究[J]. 现代情报,2016,36(2):135-139.
[6] Thepade,S.D.,N.Yadav. Novel Efficient Content Based Video Retrieval Method Using Cosine-Haar Hybrid Wavelet Transform with Energy Compaction[J]. Computing Communication Control and Automation (ICCUBEA),2015 IEEE International Conference.
[7] Thepade,S.D., N.Yadav. Novel Efficient Content Based Video Retrieval Method Using Cosine-Haar Hybrid Wavelet Transform with Energy Compaction[J]. Computing Communication Control and Automation (ICCUBEA),2015 IEEE International Conference.
[8] Coskun,B.,B. Sankur,N. Memon. Spatio-temporal transform based video hashing[J]. Multimedia,IEEE Transactions ,2006, 8(6): 1190-1208.
[9] 靳延安. 基于内容的视频拷贝检测研究[J]. 计算机应用,2008,28(8).
[10] Thampi,G.G.,D.A. Chandy. Content-based Video Copy Detection Using Discrete Wavelet Transform[J]. Information & Communication Technologies (ICT),2013 IEEE Conference.
[11] 聂秀山. 基于鲁棒哈希的视频拷贝检测技术研究[D]. 济南:山东大学,2011.
[12] Thepade,S.D.,N.Yadav. Novel Efficient Content Based Video Retrieval Method Using Cosine-Haar Hybrid Wavelet Transform with Energy Compaction[J]. Computing Communication Control and Automation (ICCUBEA),2015 IEEE International Conference.
[13] J Li,Y.L.,B Zhang.Video Copy Detection Based on Spatiotemporal Fusion Model[J]. Tsinghua Science and Technology,2012, 17(1): 51-59.
[14] Do,M.N.,M. Vetterli. Contourlets: a Directional Multiresolution Image Representation[J]. Image Processing,2002 IEEE International Conference.
[15] 焦李成,孙强. 多尺度变换域图像的感知与识别:进展和展望[J]. 计算机学报,2006, 29(2): 177-193.
[16] 陈抒瑢,李勃,董蓉,等. Contourlet-SIFT特征匹配算法[J]. 电子与信息学报,2013(5): 1215-1221.
[17] Jiang,Y.-G.,Y. Jiang, J. Wang, VCDB: A Large-Scale Database for Partial Copy Detection in Videos[J]. Computer Vision 2014:357-371.
[18] Wu Xiao,L.J.,Tang Sheng. Video Copy Detection Based on Spatiotemporal Trajectory Behavior Feature[J]. Journal of Computer Reasearch and Development,2010(47): 1871-1877.
林莹,杨扬,凌康,等. 多特征综合的视频拷贝检测[J]. 中国图像图形学报,2013, 18(5): 591-599.
No related articles found!