摘要: 【目的/意义】通过构建数学模型,研究大数据背景下微博舆情热度预测问题。【方法/过程】分析大数据背景 下的微博舆情的首发信息特征,定义首发信息影响系数,建立微博首发信息热度预测方程模型。【结果/结论】利用百 度指数、清博舆情等软件,研究 47个微博舆情实例分析模型特征,并用 6个微博舆情案例验证模型,得出该模型根据 微博首发信息的少量数据而得到较为准确的预测结果。研究成果有利于政府面对复杂微博舆情时做到“心中有 数”, 也为进一步研究大数据背景下微博舆情预测问题提供参考。
摘要: 【目的/意义】通过构建数学模型,研究大数据背景下微博舆情热度预测问题。【方法/过程】分析大数据背景 下的微博舆情的首发信息特征,定义首发信息影响系数,建立微博首发信息热度预测方程模型。【结果/结论】利用百 度指数、清博舆情等软件,研究 47个微博舆情实例分析模型特征,并用 6个微博舆情案例验证模型,得出该模型根据 微博首发信息的少量数据而得到较为准确的预测结果。研究成果有利于政府面对复杂微博舆情时做到“心中有 数”, 也为进一步研究大数据背景下微博舆情预测问题提供参考。