情报科学 ›› 2023, Vol. 41 ›› Issue (8): 155-161.

• 业务研究 • 上一篇    下一篇

智能推荐情境下老年在线健康社区的用户信息需求模型 构建及其应用研究

  

  • 出版日期:2023-08-01 发布日期:2023-09-19

  • Online:2023-08-01 Published:2023-09-19

摘要:

【 目的/意义】 近年来,老年在线健康社区已成为老年群体分享病痛和信息支持的重要媒介。为保证用户 群体有效地获得自身所需的健康信息,本文提出了一种基于老年在线健康社区的用户健康信息推荐模型。【方法/
过程】 首先,基于用户、话题及其情感倾向构建异质信息网络。其次,从内容与网络结构两个角度出发,运用支持向 量机模型将话题与用户情感角色分类。最后,根据用户的情感属性、话题的情感属性、话题的主题相似度计算结 果,进行用户的信息需求预测。【结果/结论】 研究表明:用户倾向于发布一些正面的帖子,但倾向于在他人的帖子下 评论消极的内容,相比于无明显情感倾向的中性内容表达,社区中具有情感倾向的用户互动比信息支持更加常见。 【创新/局限】本文提出的用户健康信息推荐模型有助于吸引和鼓励更多老年人分享和获取健康信息,本文的模型 对机器学习在心理健康方面的应用具有一定贡献。但在未来工作中应纳入访谈和调查法,以提升推荐模型的理论 深度。

Abstract: 【 Purpose/significance】 In recent years, online health communities for the elderly have become an important medium for the elderly to share pain and information support. To ensure that the user group can effectively obtain the health information they need, this article proposes a user health information recommendation model based on the elderly online health community. 【Method/pro⁃ cess】 Firstly, construct a heterogeneous information network based on users, topics, and their emotional tendencies. Secondly, from the perspectives of content and network structure, support vector machine models are used to classify topics and user emotional roles. Fi⁃ nally, based on the user's emotional attributes, topic emotional attributes, and topic similarity calculation results, the user's informa⁃ tion needs are predicted.【 Result/conclusion】 Research shows that users tend to post positive posts, but tend to comment on negative content in others' posts. Compared to neutral content expression without obvious emotional tendencies, user interaction with emotional tendencies is more common in communities than information support.【 Innovation/limitation】 The user health information recommen⁃ dation model proposed in this article helps to attract and encourage more elderly people to share and obtain health information. The model in this article has a certain contribution to the application of machine learning in mental health. But in future work, interview and survey methods should be included to enhance the theoretical depth of the recommendation model.