摘要: 【目的/意义】微博作为国内主要的社交网络平台之一,其信息传播实时快速,去中心化,成为网络舆情传播
的重要媒介。面向微博进行舆情中心人物的识别以及公众情绪的挖掘对网络舆情的控制具有重要的实践意义。
【方法/过程】本文以新疆棉花事件为例,使用生命周期法对微博舆情演化过程进行划分,使用word2vec和k-means
模型提取事件生命周期中各阶段的舆情中心人物,采用一种结合词典与LSTM深度学习模型的情感分析方法,对各
舆情中心人物相关的评论情感进行极性分析。【结果/结论】所提出的方法能够挖掘面向特定事件的微博舆情中心
人物、公众的情感类型及情感强度,得到能够使舆情转好的引导方法。【创新/局限】本文创新性的将主题挖掘方法
运用于微博舆情中心人物的提取。在情感分析方法上,结合词典和深度学习方法,解决了深度学习方法进行情感
分析时需人工标注的局限性。此外,本文进行情感值计算时没有考虑到表情符号的作用,后续研究会进一步考虑
更加细粒度的情感分类。