情报科学 ›› 2022, Vol. 40 ›› Issue (3): 136-143.

• 业务研究 • 上一篇    下一篇

基于微博核心实体的情感分析方法及引导机制研究

  

  • 出版日期:2022-03-01 发布日期:2022-03-08

  • Online:2022-03-01 Published:2022-03-08

摘要: 【目的/意义】微博作为国内主要的社交网络平台之一,其信息传播实时快速,去中心化,成为网络舆情传播
的重要媒介。面向微博进行舆情中心人物的识别以及公众情绪的挖掘对网络舆情的控制具有重要的实践意义。
【方法/过程】本文以新疆棉花事件为例,使用生命周期法对微博舆情演化过程进行划分,使用word2vec和k-means
模型提取事件生命周期中各阶段的舆情中心人物,采用一种结合词典与LSTM深度学习模型的情感分析方法,对各
舆情中心人物相关的评论情感进行极性分析。【结果/结论】所提出的方法能够挖掘面向特定事件的微博舆情中心
人物、公众的情感类型及情感强度,得到能够使舆情转好的引导方法。【创新/局限】本文创新性的将主题挖掘方法
运用于微博舆情中心人物的提取。在情感分析方法上,结合词典和深度学习方法,解决了深度学习方法进行情感
分析时需人工标注的局限性。此外,本文进行情感值计算时没有考虑到表情符号的作用,后续研究会进一步考虑
更加细粒度的情感分类。

Abstract: 【Purpose/significance】As one of the major social network platforms in China, Weibo has become an important media for
the dissemination of online public opinion, with real-time, rapid and decentralized information transmission. It is of great practical sig‐
nificance for the control of online public opinion to identify public opinion center figures and mine public emotions for Weibo.
【Method/process】Taking Xinjiang Cotton Event as an example, life cycle method was used to divide the evolution process of Weibo
public opinion. Use word2vec and k-means models to extract public opinion central figures in each stage of the event life cycle. A sen‐
timent analysis method combining dictionary and LSTM deep learning model was adopted. Conduct polarity analysis on the comments
and emotions related to people in the public opinion centers.【Result/conclusion】The proposed method can well mine public opinion
center figures, the type and intensity of the public's emotions, Get the guidance method that can make public opinion turn for the bet‐
ter.【Innovation/limitation】This paper innovatively applies the theme mining method to the extraction of microblog public opinion cen‐tral figures. In terms of emotion analysis method, the dictionary and deep learning method are combined to solve the limitation of deep learning method requiring manual annotation in emotion analysis. In addition, the effect of emoticons was not taken into account in the calculation of emoticons in this paper. Further studies will consider more fine-grained emotional classification.