情报科学 ›› 2024, Vol. 42 ›› Issue (9): 34-41.

• 理论研究 • 上一篇    下一篇

基于ALBERT和BiLSTM-Attention的高校网络舆情监测模型研究

  

  • 出版日期:2024-09-01 发布日期:2024-11-06

  • Online:2024-09-01 Published:2024-11-06

摘要: 【目的/意义】精准高效做好网络舆情监测,能够快速准确掌握高校网络舆情的导向和趋势,为高校管理者 分析研判,化解高校网络舆情危机,维护校园安全稳定,保障教学科研秩序具有重要意义。【方法/过程】本文构建基 于ALBERT和BiLSTM-Attention的网络舆情监测模型,以2021年秋季学期知乎平台和百度贴吧为数据源,采集其 中关于东北某大学的主题帖及回复,对文本数据进行正向、中性、负向情感识别,重点提取负向情感热门主题信息, 对结果进行词频分析,分析产生的缘由并提出解决策略。【结果/结论】实验结果表明,该模型能够有效识别不同情 感倾向的热门主题信息,及时跟踪监测情感倾向数据走势,为高校管理者提供了网络舆情监测的有效方法和模型 依据。【创新/局限】高校网络舆情具有主题多样、文本结构复杂以及文本新颖性较高等特点,文中所采用的Attention 机制,能够针对高校网络舆情特点,深层次挖掘舆情文本的情感特征,帮助模型更加准确地预测网络舆情的情感倾 向;但本文提出的舆情监测模型并未考虑到时间演化下舆情发展的波动性,在未来研究中将进一步优化模型实现 高精度动态检测。

Abstract: 【Purpose/significance】Accurate and efficient online public opinion monitoring enables university managers to quickly and accurately grasp the trend of online public opinion, and provide support for their analysis, judgment, and formulation of countermea⁃ sures. It is very important to resolve the crisis of internet public opinion in universities, maintain the safety and stability of the campus, ensure the order of teaching and scientific research, and build a harmonious campus.【Method/process】This paper collected the theme posts and replies about Jilin University from Zhihu and Baidu Tieba in the autumn semester of 2021 as data sources. The model based on Albert and Bilstm-Attentionis constructed to identify positive, neutral, and negative emotions in the text, focus on extracting hot topic information with negative emotional tendency, analyze the reasons, and propose solutions.【Result/conclusion】Results show that the model can effectively identify the emotional tendency of popular topic information and track the trend of monitoring data in time. This provides an effective method and model basis for university administrators to monitor network public opinion. Compared with previous models, this model can more fully capture the semantic information contained in the public opinion text.【Innovation/ limitation】The themes of Internet public opinion in universities are diverse, and the text structure is complex and novel. Given these characteristics, the attention mechanism can deeply mine the paragraphs with emotional tendency features contained in the text, so that the model can more accurately predict the emotional tendency of online public opinion. However, the public opinion monitoring model proposed in this paper does not take into account the fluctuation of public opinion development under time evolution, and the model will be further optimized to achieve high-precision dynamic detection in future research.