情报科学 ›› 2024, Vol. 42 ›› Issue (8): 12-21.

• 专论 • 上一篇    下一篇

基于BERTopic模型的国内信息资源管理研究主题 挖掘与演化分析

  

  • 出版日期:2024-08-01 发布日期:2024-11-05

  • Online:2024-08-01 Published:2024-11-05

摘要: 【目的/意义】基于深度学习的主题建模方法,分析我国信息资源管理领域研究主题和演化趋势,为相关研 究和实践提供参考。【方法/过程】收集中国知网的文献数据,利用BERTopic模型和动态主题模型对近五年国内信 息资源管理期刊论文进行主题识别和演化趋势分析。【结果/结论】信息资源管理领域研究包括50个主要主题,其中 图书馆阅读服务、档案与数字人文、在线医疗健康、公共文化服务、情报工作与情报分析等主题的相关论文较多。 将50个主题聚类为图书馆管理与服务、文献计量分析、用户信息行为、档案管理与数字人文、开放数据管理、竞争情 报与智库、网络舆情研究、智慧图书馆建设、信息安全与权利、应急突发事件服务等10个方向。发现颠覆性技术识 别、在线医疗健康、视频用户舆情、个人隐私权利保护、跨境数据流动与数据主权等主题增长趋势明显;竞争情报与 智库方向总体呈上升趋势,尤其是情报工作和情报分析主题的上升趋势明显;档案学相关主题的热度呈平稳趋势; 图书馆管理与服务方向明显呈下降趋势,但公共文化服务主题小幅上升;开放数据管理方向各主题小幅下降;网络 谣言舆情、突发公共卫生事件、图书馆疫情服务等热度持续衰退;ChatGPT、人工智能、元宇宙等新兴技术出现在多 个方向,前沿性特征突出。整体来看,研究方向和主题变化表现出与时俱进的特征。【创新/局限】本文运用 BER⁃ Topic模型分析展示了我国信息资源管理领域的整体发展态势,未来将利用该模型探究特定研究方向下不同主题 的关联和流变,同时比较该模型的不同模块化方法组合的主题识别效果差异,找到效果最优的方法组合。

Abstract: 【Purpose/significance】This paper extracts topics and analyzes evolution trend in information resource management in China based on the deep learning topic modeling method, and provides reference for related research and practice.【Method/process】 The literature data of CNKI were collected, and the topic identification and evolution trend analysis of domestic information resource management journal papers in recent five years were carried out by using BERTopic model and dynamic topic model.【Result/conclu⁃ sion】The research on information resource management includes 50 main topics, among which there are more papers related to library reading service, archives and digital humanities, online medical and health, public cultural service, intelligence work and intelligence analysis. The 50 topics are grouped into 10 research directions, including library management and service, bibliometric analysis, user information behavior, archive management and digital humanities, open data management, competitive intelligence and think tanks, network public opinion research, smart library construction, information security and rights, and emergency services. It is found that the themes of disruptive technology identification, online medical and health care, video user public opinion, personal privacy rights protection, cross-border data flow and data sovereignty have obvious growth trends; The trend of competitive intelligence and think tank is on the rise, especially the trend of intelligence work and intelligence analysis. The popularity of archival science related topics shows a steady trend; The direction of library management and service decreased obviously, but the theme of public cultural service in⁃ creased slightly. Open data management topics decreased slightly; The popularity of online rumors, public health emergencies and li⁃ brary epidemic services continues to decline; Emerging technologies such as ChatGPT, artificial intelligence, and metaverse appear in multiple directions with prominent cutting-edge features. On the whole, the change of research direction and theme shows the charac⁃ teristics of advancing with The Times.【Innovation/limitation】The BERTopic model is used to analyze the overall development trend in the field of IRM in China. The model will be used to explore the correlation and changes of different topics in a specific research di⁃ rection. And the topic recognition effect difference of different modular method combinations of the model will be compared to find the method combination with the best effect.