情报科学 ›› 2024, Vol. 42 ›› Issue (4): 119-128.

• 业务研究 • 上一篇    下一篇

机遇与挑战:基于BERTopic的AI环境下图书馆主题文本挖

  

  • 出版日期:2024-04-05 发布日期:2024-06-08

  • Online:2024-04-05 Published:2024-06-08

摘要:

【目的/意义】挖掘AI环境下图书馆主题文本分布特征,以期为图书馆智能化转型和服务升级提供实践参
考和理论支持。【方法/过程】本研究基于Web of Science数据库核心集合,应用BERTopic模型对检索到的相关文献
进行主题识别与知识结构提取,以洞察AI在图书馆领域的研究现状和未来发展动向。【结果/结论】研究结果显示,
AI环境下图书馆的研究主题主要可分为五类:图书馆智能化、馆藏资源开发、学术研究支持、信息资源建设、聊天机
器人与智能代理。最后,结合主题内容分析,深入讨论了AI环境下图书馆的机遇与挑战。【创新/局限】研究工作采
用先进的自然语言技术——BERTopic主题模型对AI环境下图书馆领域主题文本进行知识挖掘,未来的研究工作
将纳入更广泛的数据来源,进行更加全面细致地研究。

Abstract:

【Purpose/significance】The purpose of this study is to explore the distribution characteristics of library-themed texts in the
AI environment, aiming to provide practical references and theoretical support for the intelligent transformation and service upgrade of
libraries.【Method/process】This study is based on the core collection of the Web of Science database, using the BERTopic model to
identify topics and extract knowledge structures from the retrieved related literature, to gain insight into the current research status and
future development trends of AI in the library field
.
【Result/conclusion】The research results show that the main research topics of li⁃
braries in the AI environment can be divided into five categories: library intelligence, collection resource development, academic re⁃
search support, information resource construction, and chatbots & intelligent agents. Finally, combined with topic content analysis, the
opportunities and challenges of libraries in the AI environment are discussed in depth.【Innovation/limitation】This study leverages the
cutting-edge natural language processing technology, BERTopic, to extract knowledge from topic-specific texts in the library domain
within an AI context. Future investigations will expand to include a wider variety of data sources, aiming for more holistic and meticu⁃
lous exploration.