摘要: 【目的/意义】由于自媒体平台中的多标签文本具有高维性和不平衡性,导致文本分类效果较差,因此通过
研究5G环境下高校图书馆自媒体平台多标签文本分类方法对解决该问题具有重要意义。【方法/过程】本文首先通
过对采集的5G环境下高校图书馆自媒体平台多标签文本进行预处理,包括无意义数据去除、文本分词以及去停用
词等;然后采用改进主成分分析方法进行多标签文本降维处理,利用向量空间模型实现文本平衡化处理;最后以处
理后的文本为基础,采用Adaboost和SVM两种算法构建文本分类器,实现多标签文本分类。【结果/结论】实验结果
表明,本文拟定的自媒体平台标签文本分类方法可以使汉明损失降低,F1值提高,多标签文本分类效果好,且耗时
较低,具有可靠性。【创新/局限】由于本研究中的数据集数量不够多,所以在测试和验证方面,得出的结果具有一定
局限性。因此在未来研究中期望利用更为丰富的数据库,对所设计的方法做出进一步的改进与创新。