情报科学 ›› 2021, Vol. 39 ›› Issue (9): 11-17.

• 专论 • 上一篇    下一篇

基于用户注意力的突发公共卫生事件舆情情感演化研究 ——以新冠肺炎疫情为例

  

  • 出版日期:2021-09-01 发布日期:2021-10-21

  • Online:2021-09-01 Published:2021-10-21

摘要: 【目的/意义】目前舆情情感演化研究大多是基于主题的方法来进行情感演化分析且重点均集中在从文本
本身提取的信息上,对在社交媒体中影响情感分析的用户特征缺乏考虑。【方法
/过程】本文充分考虑网络用户信息
特征,构建融合用户特征的舆情情感演化方法,提出一种基于用户注意力机制的情感分析模型(
U-BiLSTM),并以
新冠肺炎疫情事件为例分析舆情情感演化过程。【结果
/结论】研究结果表明U-BiLSTM情感分析模型具有一定的
优越性,
F1值和准确率能达到97.08%95.19%。【创新/局限】研究提出的融合用户注意力机制的情感分析模型能够
使舆情情感演化分析具有一定的可解释性,有效揭示面向突发公共卫生事件下网民的情感演化趋势,但由于时间
和设备条件的限制,仅采用单一数据源未考虑数据的多源性,研究的数据集不够充分且研究角度仅考虑时间维度
忽略了空间维度。

Abstract: Purpose/significanceAt present, most researches on sentiment evolution in public opinion are based on topic-based meth⁃ods to analyze sentiment evolution and focus on information extracted from the text itself, and lack consideration of user characteristicsthat influence sentiment analysis in social media.Method/processThis article fully considers user information characteristics, con⁃structs a public opinion emotion evolution method that integrates user characteristics, proposes a sentiment analysis model (U-BiL⁃STM) based on user attention mechanism, and take the COVID-19 epidemic as an example to analyze the evolution of public emotionsResult/conclusionThe research results show that the U-BiLSTM sentiment analysis model has certain advantages. The F1 value and accuracy rate can reach 97.08% and 95.19%.Innovation/limitationThe sentiment analysis model that integrates the user attention
mechanism proposed by the research can make the analysis of the sentiment evolution of public opinion have a certain interpretability,and effectively reveal the trend of the sentiment evolution of netizens facing public health emergencies. However, due to the limitations of time and equipment conditions, only a single data source is used without considering the multi-source nature of the data in the re⁃search, and the data set for this study is not sufficient. From the perspective of research, the time dimension is only considered and the space dimension is ignored in this paper.