情报科学 ›› 2021, Vol. 39 ›› Issue (5): 97-105.

• 业务研究 • 上一篇    下一篇

融合知识图谱与用户病情画像的在线医疗社区场景化
信息推荐研究

  

  • 出版日期:2021-05-01 发布日期:2021-05-12

  • Online:2021-05-01 Published:2021-05-12

摘要:

【目的/意义】在现有的信息推荐方法不足的前提下,深入分析知识图谱在健康医疗社区信息推荐中的优势
以及健康信息推荐中的不同场景,旨在为不同类型用户提供场景化信息推荐方案。【方法/过程】依据场景划分,搭
建基于语义的同主题推荐模型、基于病情画像与用户兴趣的个性化推荐模型以及基于情境感知的信息推荐模型,
并对其中具体模型和算法进行了设计与实现。【结果/结论】构建不同场景下的信息推荐模型,推理并输出各类医疗
知识和信息,能够辅助渴望获得更为精准的在线健康信息的患者。【创新/局限】提出了融合知识图谱和病情画像的
在线医疗社区信息推荐,构建了融合知识图谱和病情画像的在线医疗社区信息推荐方案。仍需进一步强化知识图
谱与用户画像的融合应用。

Abstract:

【Purpose/significance】Under the premise of insufficient existing information recommendation methods, in-depth analysis
of the advantages of knowledge graphs in health medical community information recommendation and different scenarios in health in⁃
formation recommendation, aiming to provide scenario-based information recommendation for different types of users.【Method/pro⁃
cess】According to the division of the scene, a co-topic recommendation model based on semantics, a personalized recommendation
model based on disease portraits and user interests, and a situational information recommendation model are designed, and specific
models and algorithms are designed and implemented.【Result/conclusion】Construct recommendation models in different scenarios,
reason and output various medical knowledge and information, which can assist patients who desire more accurate online health infor⁃
mation.【Innovation/limitation】Proposed an online medical community information recommendation fusion of knowledge maps and ill⁃
ness profiles, and constructed an online medical community information recommendation program that fused knowledge maps and ill⁃
ness profiles. It is still necessary to further strengthen the application of the integration of knowledge graphs and user portraits.