情报科学 ›› 2021, Vol. 39 ›› Issue (1): 56-64.

• 理论研究 • 上一篇    下一篇

论文学术创新力特征指标体系研究 

  

  • 出版日期:2021-01-01 发布日期:2021-01-25

  • Online:2021-01-01 Published:2021-01-25

摘要: 【目的/意义】探索论文学术创新力指标体系中特征的重要性,为学术创新力评价研究提供基础。【方法/
程】系统梳理学术创新力评价相关研究,根据对现有成果的分析以及对学术创新力内涵的研究,提取学术创新力相
关的特征指标,并给出特征指标的计算方法。经过分析比较,选择动态网络测度法计算论文创新力,并通过散点图
分析单个特征与创新力之间的相关性,分析单个特征对创新力的影响机制。【结果
/结论】各指标特征与论文学术创
新力不是简单线性关系,不能简单使用传统指标体系来评价学术创新力,需要探索机器学习方法进行评价。【创新
/
局限】从新的视角研究特征指标体系,通过对机器学习模型的实证分析得到各个特征对创新力评价的重要性程度,
筛选出真正与学术创新力相关的特征,对原始指标体系进行更正。

Abstract: Purpose/significanceExploring the importance of the characteristics of the academic innovation index system, providing
a basis for the study of academic innovation evaluation.
Method / processBased on the systematic review of the research on academic
innovation evaluation, this paper extracts the characteristic indicators related to academic innovation based on the analysis of existing
achievements and the study on the connotation of academic innovation, and gives the calculation method of characteristic indicators.
After analysis, the dynamic network measurement method is selected to calculate the innovation power of the paper, and the correla⁃
tion between individual features and innovation power is analyzed through scatter plots to analyze the influence mechanism of individu⁃
al features on innovation power.
Result/conclusionThe characteristics of each index and the academic innovation of the paper are
not simply linear. It is not possible to simply use the traditional indicator system to evaluate academic innovation. It is necessary to ex⁃
plore machine learning methods for evaluation.
Innovation/limitationStudy the characteristic index system from a new perspective,
obtain the importance of each characteristic to the evaluation of innovation through empirical analysis of the machine learning model,
screen out the characteristics that are truly related to academic innovation, and correct the original index system.