情报科学 ›› 2021, Vol. 39 ›› Issue (1): 128-134.

• 业务研究 • 上一篇    下一篇

基于用户画像和视频兴趣标签的个性化推荐 

  

  • 出版日期:2021-01-01 发布日期:2021-01-25

  • Online:2021-01-01 Published:2021-01-25

摘要: 【目的/意义】用户画像深刻地描述了视频用户的个体和群体行为特征,为视频的个性化推荐服务提供参
考。【方法
/过程】通过文本挖掘对爬取的视频、用户及其观影数据分析,构建单个用户画像,并通过K-MeansLDA
模型对用户聚类并提取主题,挖掘群体用户特征。基于用户画像和时间指数衰减的视频兴趣标签,并结合视频喜
爱度和协同过滤,进行视频推荐。【结果
/结论】考虑时间指数衰减的个性化推荐,提高了系统对用户兴趣的感知。
结合视频喜爱度和协同过滤,推荐视频评分达
0.87,有助于提高用户对网站的忠诚度和活跃度。【创新/局限】基于用
户生成内容的文本挖掘结果,进行单个和群体用户画像,并创新性采用时间指数衰减构建用户视频兴趣标签,以捕
获用户兴趣的变化。由于网络爬虫的限制,实验数据量有一定的局限性,且特征提取兴趣范围有限。


Abstract: Purpose/significanceUser Profile can describe the individual and group behavior characteristics of video users in a more
profound manner, and provide reference for personalized recommendation service of video.
Method/processThrough text mining to
the crawling video, users and their viewing data analysis, this paper builds a single user profile. Furthermore, based on K-Means and
LDA model, this paper clusters users and extracts topics, and then mines the characteristics of group users. Video interest tags based
on user profile and time exponential decay combined with video preference and collaborative filtering, are used for video recommenda⁃
tion.
Result/conclusionConsidering the personalized recommendation of time exponential decay, the system's awareness of user in⁃
terest is improved. Combined with video preference and collaborative filtering, the recommended video rating is 0.87, which helps in⁃
crease user loyalty and activity to the site.
Innovation/limitationBased on the results of text mining of user-generated content, indi⁃
vidual and group user profile are carried out. And then this paper innovatively uses time exponential decay to construct user video in⁃
terest tags to capture dynamic user interest. Due to the limitation of Network Crawler, the amount of experimental data has some limita⁃
tions, and the range of interest in feature extraction is limited.