摘要: 【目的/意义】针对基于统计特征的短语识别方法存在的噪声问题,提出了融合多策略的短语识别方法。【方 法/过程】该方法融合多统计量提取候选短语,并基于停用词表进行初步过滤,利用词向量较强的语义表达能力对 候选短语进行过滤,以提高短语识别的准确率。在环保领域专利语料上进行实验,利用搜狗新闻语料与中文专利 数据训练词向量库进行短语识别优化。【结果/结论】该方法对于语料规模较小以及阈值较低的结果过滤还有待进 一步研究。实验结果表明,融合深度学习的方法提高了短语识别的准确率。
摘要: 【目的/意义】针对基于统计特征的短语识别方法存在的噪声问题,提出了融合多策略的短语识别方法。【方 法/过程】该方法融合多统计量提取候选短语,并基于停用词表进行初步过滤,利用词向量较强的语义表达能力对 候选短语进行过滤,以提高短语识别的准确率。在环保领域专利语料上进行实验,利用搜狗新闻语料与中文专利 数据训练词向量库进行短语识别优化。【结果/结论】该方法对于语料规模较小以及阈值较低的结果过滤还有待进 一步研究。实验结果表明,融合深度学习的方法提高了短语识别的准确率。