情报科学 ›› 2018, Vol. 36 ›› Issue (6): 30-34.

• 论文 • 上一篇    下一篇

基于CNN和SOM的评论主题发现

  

  • 出版日期:2018-06-05

  • Online:2018-06-05

摘要: 【目的/意义】随着旅游网站的增加,游客的网络评论日益增多。针对传统方法在旅游短文本评论主题分类 时出现特征维度过高和数据稀疏等问题,本文提出一种基于卷积神经网络和 SOM的旅游评论主题发现方法。【方 法/过程】首先采用词向量来进行文本表示,降低了特征维度过高问题;其次,通过卷积神经网络对评论文本提取高 阶的抽象特征;最后在通过 SOM 模型基于提取到的抽象特征对主题进行聚类。【结果/结论】实验结果表明, CNN-SOM算法较传统文本聚类算法在准确率、召回率和 F值上都有显著提高,能够更好的进行旅游评论的主题 发现。