Effects of arbuscular mycorrhizal fungi on the root morphology of Zenia insignis in karst soil habitat
QU Minghua1,2, LI Sheng2, YU Yuanchun1, ZHANG Jinchi1
1. Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037, Nanjing, China; 2. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 311400, Hangzhou, China
Abstract:[Background] In the karst region of Southwest China, where is characterized with the fragile ecological environment, the bedrock is bare and soil is shallow, vegetation recovery is difficult. A symbiotic relationship between arbuscular mycorrhizal fungi(AMF) and plants, which is an adaptation strategy by root morphological changes, to cope with nutrient stress by increasing plant nutrient use efficiency. The objective of this study is to provide a microbial interference pathway for vegetation restoration, soil and water conservation. Meanwhile, it would provide the basis for screening dominant strains in karst region. [Methods]Zenia insignis is a common afforestation species in limestone areas of Southwest China. We used AMF Funneliformis mosseae, Rhizoglomus intraradices and mixed mycorrhizal fungi(Mi) to inoculate Z. insignis seedlings. The effects of mycorrhizal fungi on root morphology of Z. insignis seedlings in different nutrient condition of karst soil habitats were studied after 150 d of cultivation. [Results] 1)In nutrient-poor karst soil habitat, Z. insignis inoculated with F.mosseae showed the highest colonization rate and high-intensity mycorrhizal dependency. F.mosseae significantly increased the root biomass, total root length, total root surface area, total root volume and average root diameter by 460.49%, 233.91%, 258.99%, 293.04% and 9.29%, respectively. Z. insignis inoculated with R.intraradices reduced root biomass, total root length, total root surface area and total root volume by 10.49%, 46.67%, 42.70% and 39.30%, respectively. At the same time, the average root diameter increased 6.14%, which showed no significant difference from the control. Z. insignis inoculated with Mi significantly increased the average root diameter. While the influence on root biomass, total root length, total root surface area and total root volume was between single inoculations. 2) In nutrient-rich karst soil, Z.insignis inoculated with F.mosseae significantly increased root biomass, total root length, total root surface area, total root volume and average root diameter by 138.04%, 28.51%, 50.79%, 76.37% and 20.71%, respectively, which was significantly lower than that by F. mosseae treatment in low nutrient karst soil habitat except for average root diameter. When inoculated with R.intraradices, root biomass, total root length, total root surface area, total root volume and average root diameter significantly increased by 128.62%, 57.30%, 66.27%, 75.68% and 8.63%, respectively. There was significant difference from the R.intraradices inoculation in low nutrient karst soil habitat except for average root diameter. Mi treatment increased root biomass, total root length, total root surface area, total root volume and average root diameter by 51.45%, 39.79%, 38.89%, 36.99% and 1.29%, respectively. [Conclusions] The AMF affect the root morphology of Z.insignis in the different nutrient conditions of karst soil habitats. Under the nutrient stress, F.mosseae is more conducive to changing root morphology, making the host plant easier to colonize and survive. Thus, F. mosseae can be used as a dominant strain for the intervention of mycorrhizal fungi for vegetation restoration in nutrient-poor karst soil habitat.
KRAEHMER H, BAUR P. Root morphology[M]//Weed Anatomy. Hoboken, New Jersey,USA:John Wiley & Sons, Ltd, 2013:92.
[2]
THEODOROU C, BOWEN G D. Root morphology, growth and uptake of phosphorus and nitrogen of Pinus radiate families in different soils[J]. Forest Ecology and Management, 1993, 56(1/4):43.
[3]
MCELRONE A J, POCKMAN W T, MARTíNEZ-VILALTA J, et al. Variation in xylem structure and function in stems and roots of trees to 20 m depth[J]. New Phytoloyist, 2004, 163(3):507.
[4]
樊卫国, 罗燕. 不同磷水平下4种柑橘砧木的生长状况、根系形态和生理特性[J]. 中国农业科学, 2015,48(3):534. FAN Weiguo, LUO Yan. Growth status, root morphology and physiological characteristics of four citrus rootstocks under different phosphorus levels[J]. Scientia Agricultura Sinica, 2015, 48(3):534.
[5]
张东梅, 宋鑫, 张丽静, 等. 不同供磷水平对紫穗槐生长及根系形态的影响[J]. 草业科学, 2014, 31(9):1767. ZHANG Dongmei, SONG Xin, ZHANG Lijing, et al. Effects of phosphorus fertilizing on growth and root morphology of Amorpha fruticosa[J]. Pratacultural Science, 2014, 31(9):1767.
[6]
高丽霞, 李森, 莫爱琼, 等. 丛枝菌根真菌接种对兔眼蓝莓在华南地区生长的影响[J]. 生态环境学报, 2012, 21(8):1413. GAO Lixia, LI Sen, MO Aiqiong. Effects of inoculation of arbuscular mycorrhizal fungi on growth of rabbiteye blueberry(Vaccinium ashei Reade) in south China[J]. Ecology and Enviromental Sciences, 2012, 21(8):1413.
[7]
WU Qiangsheng, ZOU Yingning, HE Xinhua, et al. Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange(Poncirus trifoliate L.Raf.) seedlings[J]. Plant Growth Regulation, 2011, 65(2):273.
[8]
何跃军,钟章成. 水分胁迫和接种丛枝菌根对香樟幼苗根系形态特征的影响[J]. 西南大学学报(自然科学版), 2012, 34(4):33. HE Yuejun, ZHONG Zhangcheng. Effects of water stress and AM inoculation on root morphological characteristics in Cinnamomum camphora seedlings[J]. Journal of Southwest University(Natural Science Edition), 2012, 34(4):33.
[9]
谢小林, 顾振红, 朱红惠, 等. 球囊霉素相关土壤蛋白与根系形态的相关性研究[J]. 菌物学报, 2013, 32(6):993. XIE Xiaolin, GU Zhenhong, ZHU Honghui. The relationships between glomalin-related soil protein and root morphology[J]. Mycosystema, 2013, 32(6):993.
[10]
舒玉芳, 叶娇, 潘程远, 等. 三峡库区桑树菌根发育特征及菌根对桑苗生长的促进作用[J]. 蚕业科学, 2011, 37(6):0978. SHU Yufang, YE Jiao, PAN Chengyuan, et al. Developmental features of mycorrhiza and its promotion effect on growth of mulberry saplings in Three Gorges Reservoir region[J]. Science of Sericulture, 2011, 37(6):0978.
[11]
SUN Xueguang, TANG Ming. Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor[J]. South African Journal of Botany, 2013, 88(1):373.
[12]
黄咏明, 吴黎明, 宋放, 等. 根系修剪和接种丛枝菌根真菌对枳实生苗根系形态的影响[J]. 中国南方果树, 2019, 48(2):5. HUANG Yongming, WU Liming, SONG Fang, et al. Effects of root pruning and AM inoculation on root morphological in Poncirus trifoliata seedlings[J]. South China Fruits, 2019, 48(2):5.
[13]
邹英宁, 吴强盛, 李艳, 等. 丛枝菌根真菌对枳根系形态和蔗糖、葡萄糖含量的影响[J]. 应用生态学报, 2014, 25(4):1125. ZOU Yingning, WU Qiangsheng, LI Yan, et al. Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata[J]. Chinese Journal of Applied Ecology, 2014, 25(4):1125.
[14]
张亚敏,马克明,曲来叶. 干旱条件下接种AM真菌对小马鞍羊蹄甲幼苗根系的影响[J]. 生态学报, 2017, 37(8):2611. ZHANG Yamin, MA Keming, QU Laiye. Inoculation with arbuscular mycorrhizal fungi enhances the root system of Bauhinia faberi var. microphylla seedlings under drought stress conditions[J]. Acta Ecologica Sinica, 2017, 37(8):2611.
[15]
黄同丽, 唐丽霞, 陈龙, 等. 喀斯特区3种灌木根系构型及其生态适应策略[J]. 中国水土保持科学, 2019, 17(1):89. HUANG Tongli, TANG Lixia, CHEN Long, et al. Root architecture and ecological adaptation strategy of three shrubs in karst area[J]. Sciene of Soil and Water Conservation, 2019, 17(1):89.
[16]
张中峰, 张金池, 黄玉清, 等. 水分胁迫和接种菌根真菌对青冈栎根系形态的影响[J]. 生态学杂志, 2015, 34(5):1198. ZHANG Zhongfeng, ZHANG Jinchi, HUANG Yuqing, et al. Effects of water stress and mycorrhizal fungi on root morphology of Cyclobalanopsis glauca seedlings[J]. Chinese Journal of Ecology, 2015, 34(5):1198.
[17]
张炎森. 任豆在酸性土壤上的生长表现和栽培技术[J]. 广东林业科技, 2007, 23(1):76. ZHANG Yansen. Growth performance on acid soil and cultivation technique of Zenia insignis[J]. Guangdong Forestry Scicence and Technology, 2007, 23(1):76.
[18]
宋凤鸣, 刘建华, 刘登彪, 等. 3种丛枝菌根真菌对任豆生长和抗旱性的影响研究[J]. 西南林业大学学报(自然科学), 2018, 38(6):97. SONG Fengming, LIU Jianghua, LIU Dengbiao, et al. Effects of 3 kinds of arbuscular mycorrhizal fungi on the growth and drought resistance of Zenia insignis[J]. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(6):97.
[19]
魏源, 王世杰, 刘秀明, 等. 不同喀斯特小生境中土壤丛枝菌根真菌的遗传多样性[J]. 植物生态学报, 2011, 35(10):1083. WEI Yuan, WANG Shijie, LIU Xiuming, et al. Genetic diversity of arbuscular mycorrhizal fungi in karst microhabitats of Guizhou province, China[J]. Chinese Journal of Plant Ecology, 2011, 35(10):1083.
[20]
吴强盛, 袁芳英, 费永俊, 等. 丛枝菌根真菌对白三叶根系构型和糖含量的影响[J]. 草业学报, 2014, 23(1):199. WU Qiangsheng, YUAN Fangying, FEI Yongjun, et al. Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover[J]. Acta Prataculturae Sinica, 2014, 23(1):199.
[21]
马放, 苏蒙, 王立, 等. 丛枝菌根真菌对小麦生长的影响[J]. 生态学报, 2014, 34(21):6107. MA Fang, SU Meng, WANG Li, et al. Effects of arbuscular mycorrhizal fungi(AMF) on the growth of wheat[J]. Acta Ecologica Sinica, 2014, 34(21):6107.
[22]
吴强盛. 园艺植物丛枝菌根研究与应用[M]. 北京:科学出版社, 2010:7. WU Qiangsheng. Arbuscular mycorrhizal research and application of horticultural plants[M]. Beijing:Science Publishing House, 2010:7.
[23]
CRISTINA C J J,GREEN C A, WATSON F W, et al. Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity[J]. Mycorrhiza, 2004, 14(3):177.
[24]
ORTAS I, USTUNER O. Determination of different growth media and various mycorrhizae species on citrus growth and nutrient uptake[J]. Scientia Horticulturae, 2014, 166(1):84.
[25]
郑超, 李奇伟, 黄振瑞, 等. 磷水平对不同基因型甘蔗苗期根系性状的影响[J]. 热带农业科学, 2015, 35(2):1. ZHENG Chao, LI Qiwei, HUANG Zhenrui, et al. Effect of phosphorus level on sugarcane root-system traits at its seedling stage[J]. Chinese Journal of Tropical Agriculture, 2015, 35(2):1.
[26]
姜英, 刘菲, 李娟, 等. 不同AM菌剂对石山树种任豆幼苗生长的影响[J]. 广西林业科学, 2019, 48(1):51. JIANG Ying, LIU Fei, LI Juan, et al. Effects of arbuscular mycorrhizal fungi on seedling growth of zenia insignis[J]. Guangxi Forestry Science, 2019, 48(1):51.
[27]
YADAV A, SURI V K, KUMAR A, et al. Effect of AM fungi and phosphorus fertilization on P-use dfficiency, nutrient acquisition and root morphology in pea(Pisum sativum L.) in an acid Alfisol[J]. Journal of Plant Nutrition, 2018,41(6):689.
[28]
WU Qiangsheng, CAO Mingqin, ZOU Yingning, et al. Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system[J]. Scientia Horticulturae, 2016(199):95.
[29]
陈伟玉, 麦志通, 蔡开朗, 等. 不同丛枝菌根真菌对3种珍贵树种促生效应试验[J]. 广东农业科学, 2017, 44(11):13. CHEN Weiyu, MAI Zhitong, CAI Kailang, et al. Study on promotion effects of different arbuscular mycorrhizas fungi on rare tree species[J]. Guangdong Agricultural Sciences, 2017, 44(11):13.
[30]
袁丽环, 闫桂琴, 朱志敏. 丛枝菌根(AM)真菌对翅果油树幼苗根系的影响[J]. 西北植物学报, 2009, 29(3):0580. YUAN Lihuan, YAN Guiqin, ZHU Zhimin. Effects of arbuscular mycorrhizal fungi on the seedling roots of Elaeagnus mollis diels[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3):0580.
[31]
FAN L, DALPE Y, FANG C Q, et al. Influence of arbuscular mycorrhizae on biomass and root morphology of selected strawberry cultivars under salt stress[J]. Botany, 2011, 89(6):397.
[32]
RYSER P, LAMBERS H. Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply[J]. Plant and Soil, 1995, 170(2):251.
[33]
王茜, 董梅, 王强, 等. 不同丛枝菌根真菌对青藏高原高寒草原优良牧草垂穗披碱草生长的促生效应[J]. 云南农业大学学报(自然科学), 2014, 29(6):840. WANG Qian, DONG Mei, WANG Qiang, et al. Effects of various arbuscular mycorrhizal fungi on the growth of Elymus nutans in Tibetan Plateau alpine meadow ecosystem[J]. Journal of Yunnan Agricultural University (Natural Science), 2014, 29(6):840.
[34]
杨雅婷, 陈艳芳, 王莉琴, 等. 接种菌根真菌对梨幼苗养分吸收与生长发育的影响[J]. 中国南方果树, 2015, 45(2):122. YANG Yating, CHEN Yanfang, WNAG Liqin, et al. The effects of arbuscular mycorrhiza fungi on the growth and nutrient uptake of Pyrus pashia Buch.-Ham[J]. South China Fruits, 2015, 45(2):122.
[35]
黄小辉, 陈道静, 冯大兰. 不同基质条件下丛枝菌根真菌对桑树生长的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(3):9. HUANG Xiaohui, CHEN Daojing, FENG Dalan. The effects of arbuscular mycorrhiza fungi on the growth of mulberry in different nursery substrates[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2019, 43(3):9.
[36]
屈明华, 俞元春, 李生, 等. 丛枝菌根真菌对矿质养分活化作用研究进展[J]. 浙江农林大学学报, 2019, 36(2):394. QU Minghua, YU Yuanchun, LI Sheng, et al. Advances in research on activation of mineral nutrients by arbuscular mycorrhizal fungi[J]. Journal of Zhejiang A & F University, 2019, 36(2):394.