情报科学 ›› 2025, Vol. 43 ›› Issue (9): 161-170.

• 博士论坛 • 上一篇    下一篇

突发公共事件情境下社交媒体用户人智交互行为研究

  

  • 出版日期:2025-09-05 发布日期:2025-12-12

  • Online:2025-09-05 Published:2025-12-12

摘要: 【目的/意义】突发公共事件频发的背景下,AIGC 正深度嵌入社交媒体网络,影响用户信息模式。本文聚 焦社交媒体用户与 AI智能代理的互动行为,旨在解析人智交互行为特征,为新技术背景下的应急治理提供参考。 【方法/过程】以 X平台为样本,利用 Python、Botometer工具识别突发公共事件爆发期 AI代理账号推文下的用户评 论。采用扎根理论,构建突发公共事件中社交媒体人智交互行为模型。【结果/结论】研究发现:① 认知维度中,用户 具备风险意识、信息判断与社会认知取向;② 情感维度中用户经历“情感触动”,伴随“情绪宣泄”“情感共鸣”“感谢 鼓励”等正向联结特征;③ 行为维度中,用户呈现“信息分享”“信息搜寻”“事实核查”及“信息从众”等行为倾向。整 体来看,人智交互行为展现出个体信息敏感性与集体感染性的特点,揭示了用户在认知、情感和行为三维度的耦合 作用下,所呈现的复合性交互的演变特征。【创新/局限】本研究将“人智交互”概念引入突发公共事件应急管理,构 建认知-情感-行为的三维模型,揭示了AI对公众信息行为的影响。但受限于样本平台、语言语境,研究的外推性 与推断力仍需进一步验证。

Abstract: 【Purpose/significance】Amid the increasing frequency of public emergencies, Artificial Intelligence Generated Content (AIGC) has become deeply integrated into social media networks, influencing users' information behaviors and accelerating the shift from User Generated Content (UGC) to a "human-AI collaboration" paradigm. This study focuses on the interactive behaviors between human users and AI agents on social media, aiming to uncover the characteristics and mechanisms of human-AI interactions and to provide insights for emergency governance in the intelligent era.【Method/process】Using Python and Botometer, the study collected and identified comments from human users on tweets posted by AI agents on the X platform (formerly Twitter) during public emergency outbreaks. Adopting the three-level coding approach of classic grounded theory, the research systematically analyzed these comments and constructed a model of social media users' human-AI interaction behaviors in public emergencies.【Result/conclusion】The find⁃ ings reveal that: (1) in the cognitive dimension, users display risk awareness, information judgment, and social cognition orientation; (2) in the emotional dimension, users experience "emotional triggers" that lead to "emotional venting", "empathy" and "expressions of gratitude and encouragement"; (3) in the behavioral dimension, users exhibit "information sharing" "information seeking" "factchecking," and "informational conformity" tendencies. Overall, AI agents significantly influence human users’cognitive processing, with human-AI interactions demonstrating high information sensitivity and emotional contagion. These findings reveal a dynamic cou⁃ pling of cognition, emotion, and behavior that shapes complex, evolving interaction patterns, offering practical implications for platform governance and emergency management.【Innovation/limitation】This study introduces the "human-AI interaction" concept into emer⁃ gency management, establishing a three-dimensional cognition–emotion–behavior model that reveals AI's impact on public informa⁃ tion behavior. However, its generalizability is constrained by platform-specific data, linguistic context, and qualitative methodological limitations, suggesting the need for future multi-platform and longitudinal validation.