Please wait a minute...
档案学研究  2020, Vol. 34 Issue (4): 64-68    DOI: 10.16065/j.cnki.issn1002-1620.2020.04.009
  档案资源建设 本期目录 | 过刊浏览 |
基于深度学习的以图搜图技术在照片档案管理中的应用研究
赵学敏1,田生湖2,张潇璐3
1 云南大学档案馆 昆明 650091
2 云南财经大学滇商研究院 昆明 650221
3 云南大学图书馆 昆明 650091
Research on Application of Image Search Technology in Photo Archives Management Based on Deep Learning
Xuemin ZHAO1,Shenghu TIAN2,Xiaolu ZHANG3
1 Archives, Yunnan University, Kunming 650091
2 Yunnan Business Research Institute, Yunnan University of Finance and Economics, Kunming 650221
3 Library, Yunnan University, Kunming 650091

输出:BibTeX | EndNote (RIS)      
摘要: 

传统档案管理中识别照片档案内容完全依靠手工著录文字说明,但实际管理中存在文字说明著录不全导致照片内容展示不全等缺点。在回顾照片档案管理现状和图像内容搜索技术发展的基础上,本文提出基于深度学习的以图搜图照片档案管理系统架构,并运用Keras深度学习框架和VGG16网络模型成功实现照片档案以图搜图实验。运用深度学习方法来对照片档案进行图片内容识别,对照片档案中的内容进行特征提取,实现以图搜图,为照片档案的管理利用和资源开发提供理论支持和实践思路。

Abstract

In traditional archives management, the content recognition of photo archives completely relies on the manual description text, but in the actual management, there are some shortcomings such as incomplete description text leading to the incomplete display of the photo contents. Based on the review of the current situation of photo archives management and the development of image search technology, this paper puts forward the architecture of photo archives management system based on deep learning model, and uses the Keras deep learning framework and VGG16 network model to successfully implements photo archives search. This paper uses deep learning method to recognize the image contents of the photo archives , extract the features of the contents of the photo archives, search the image by the image, and wants to theoretical support and practical ideas for the management, utilization and resource development of photo archives.

出版日期: 2020-09-08
引用本文:

赵学敏,田生湖,张潇璐. 基于深度学习的以图搜图技术在照片档案管理中的应用研究[J]. 档案学研究, 2020, 34(4): 64-68.
Xuemin ZHAO,Shenghu TIAN,Xiaolu ZHANG. Research on Application of Image Search Technology in Photo Archives Management Based on Deep Learning. Archives Science Study, 2020, 34(4): 64-68.

链接本文:

http://journal12.magtechjournal.com/Jwk_dax/CN/10.16065/j.cnki.issn1002-1620.2020.04.009      或      http://journal12.magtechjournal.com/Jwk_dax/CN/Y2020/V34/I4/64

[1] 杨红本. 档案管理理论与实务[M].上海:上海教育出版社,2016:6.
[2] 王馨艺. 试析高校数码新闻照片的档案管理—— 以中国人民大学图片视频中心为例[J].兰台世界,2017(21):45-50.
[3] 江媛媛. “以图搜图”技术在照片档案管理中的应用研究[J].档案与建设,2018(6):38-41.
[4] Kato T.Database architecture for content-based image retrieval[J]. International Society for Optimal Engineering,1992,1662:112-123.
[5] ImageNet网站[EB/OL]. [2019-02-12].http://www.image-net.org/
[6] Krizhevsky A,Sutskever I,Hinton G E.Imagenet classification with deep convolutional neural networks[C].Advances in neural information processing systems, 2012:1097-1105.
[7] Navneet Dalal.Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004,60(2):91-110.
[8] Dalal N, Triggs B.Histograms of oriented gradients for human detection[C]. international Conference on computer vision & Pattern Recognition(CVPR'05). IEEE Computer Society,2005,1:886-893.
[9] Zeiler M D,Fergus R.Visualizing and understanding convolutional n2n A. Very deep convolutional networks for large-scale image recognition[J].ArXiv preprint arXiv:1409.1556,2014.Motwani R. Approximate nearest neighbors:Towards removing the curse of dimensionality[C].Proceedings of the thirtieth annual ACM symposium on Theory of computing,1998:604-613.
[12] Gulli A,Pal S.Deep Learning with Keras[M]. Packt Publishing Ltd,2017.
[13] 夏炎. 大规模图像数据中相似图像的快速搜索[D].中国科学技术大学,2015.
[14] 刘宇韬. 广东省声像档案管理研究[D].兰州大学,2017.
[15] 金晶,梁国灿. 数码照片档案管理的若干问题[J].中国档案,2005(7):30-32.
[16] 马凌云. 基于Web的照片档案数据库建设研究[D].武汉大学,2004.
[17] 胡湖. 基于人脸识别的照片档案挖掘利用架构[C].档案管理与利用—— 方法技术实践,2013.
No related articles found!