情报科学 ›› 2024, Vol. 42 ›› Issue (9): 91-99.

• 理论研究 • 上一篇    下一篇

数智时代高校科研人才评价现状及激励对策研究

  

  • 出版日期:2024-09-01 发布日期:2024-11-06

  • Online:2024-09-01 Published:2024-11-06

摘要: 【目的/意义】科学合理的高校科研人才评价体系能够促进高校科研活动并激励科研人员。本文试图明晰 数智时代高校科研人才评价的现状,以探索高校科研人才的激励对策。【过程/方法】首先基于文本挖掘技术,对新 浪微博平台中高校科研人才评价破“五唯”等话题下的数据进行分析,通过高频词语义网络构建网民情感分类以明 晰高校科研评价的现状。【结果/结论】数据分析结果表明,高校应融通多源数据强化科研人才精准评价,通过数智 技术辅助学术绩效评价,利用数据驱动建立健全学术激励机制。【创新/局限】融合数智时代特点,综合选择文本数 据挖掘和文献计量方法获取网络和学术数据库文献中关于高校科研人才评价的相关数据,分析不同来源数据库中 高校科研人才评价的情况并以可视化的方式展示知识图谱,但是样本的选取平台相对较少。

Abstract: 【Purpose/significance】A scientifically reasonable evaluation system for scientific research talents in universities can pro⁃ mote scientific research activities and motivate researchers. This article attempts to clarify the current situation of the evaluation of sci⁃ entific research talents in universities in the era of digital intelligence, in order to explore incentive strategies for scientific research tal⁃ ents in universities.【Method/process】This study first uses text mining technology to analyze data on topics such as breaking the "Five Only" evaluation criteria for scientific research talents in universities on the Sina Weibo platform. By constructing a high-frequency semantic network and categorizing the emotions of netizens, the social status and ideological basis of scientific research evaluation in universities are clarified.【Result/conclusion】The data analysis results indicate that universities should integrate multi-source data to strengthen the precise evaluation of scientific research talents, use intelligent technology to assist academic performance evaluation, and use data-driven methods to establish a sound academic incentive mechanism【. Innovation/limitation】Guided by data science, se⁃ lect text data mining and bibliometric methods to obtain relevant data on the evaluation of scientific research talents in universities from online and academic database literature, analyze the evaluation of scientific research talents in universities from different source databases and visually display knowledge graphs, but the sample platform is relatively small.