摘要: 【目的/意义】随着社交网络与新闻媒体的发展,大量虚假信息的滋生与传播已经引发了严重的社会问题。
目前的研究主要依赖于收集谣言发生后的传播特征进行识别。为了在早期更准确地发现谣言,本文提出一种融合
深度语义知识的谣言识别模型。【方法/过程】本文通过使用 Transformer和 Multi-head 注意力抽取舆情信息深层结
构的复杂特征,融合了文档结构及上下文语义知识表征,以提高早期识别虚假舆论信息准确率来及时防止谣言传
播扩散。【结果/结论】本文通过在各个平台的真实数据集进行训练和识别实验,较现有基线方法的准确率最少提升
了5.6%,最大提高了24.6%。结果表明,本文模型可通过对早期谣言文本的事实验证,提高模型识别谣言的准确性
以在早期阶段阻断谣言传播。【创新/局限】本文谣言识别模型在BERT-Base基础上进一步结合了舆情文本语义知
识特征表征,能有效提高早期谣言的识别准确度,但目前尚未考虑谣言传播者个性化特征如社会标签、行为信息
等,如何融合更多传播者特征有待进一步研究。