情报科学 ›› 2022, Vol. 40 ›› Issue (5): 104-110.

• 业务研究 • 上一篇    下一篇

多源过程性数据驱动的学习者综合评价模型研究 #br#

  

  • 出版日期:2022-05-01 发布日期:2022-05-30

  • Online:2022-05-01 Published:2022-05-30

摘要: 【目的/意义】信息技术与互联网技术的飞速发展让教育行业进入了大数据时代。由于学习者在整个学习
过程中的学习行为数据能够被记录下来,这种多源过程性数据为基于大数据的教育评价提供了新的可能。【方法/
过程】本文从学习者行为特征视角出发,设计了多源过程性数据驱动的学习者综合评价模型。该模型利用流数据
聚类算法对不断涌入的学习者数据进行处理,及时生成或更新学习者画像,然后基于学习者画像对学习者学习行
为进行分析,构建学习者综合评价模型,以实现对学习者学习表现的实时反馈。【结果/结论】该模型可以对学习者
的学习过程进行综合评价,及时的反馈有助于教学评价的开展,同时丰富现有的教学评价体系,为实现教学评价与
优化教学的良性循环提供依据和参考方向。【创新/局限】本文提出了过程性数据驱动的对学习者动态综合评价模
型,后续将基于研究模型开展实际应用研究。

Abstract: Purpose/significanceThe rapid development of information technology and Internet technology has brought the education industry into the era of big data.As learners' learning behavior in the whole learning process can be recorded completely,education big data provides new ideas for the deep reform of education evaluation. Method/processFrom the perspective of learner behavior charac⁃teristics,this paper designs a learner comprehensive evaluation model driven by multi-source process data.In this model.the streaming data clustering algorithm is used to process the continuous influx of learners' data.generate or update learners' portraits in time.then analyze learners' learning behavior based on learners' portraits,and build a comprehensive evaluation model for learners.so as to com⁃
plete the real-time feedback of learners' learning performance
. Result/conclusionThe model can comprehensively evaluate the learn⁃ing process of learners and give feedback in time, which is helpful to the development of teaching evaluation, enriches the existing teaching evaluation system.and provides the basis and reference direction for realizing the virtuous cycle of teaching evaluation and op⁃timization.Innovation/limitationIn this paper.,a process data-driven dynamic comprehensive evaluation model for learners is pro⁃posed.and the research-based model will be applied to the actual data.