情报科学 ›› 2021, Vol. 39 ›› Issue (9): 101-109.

• 业务研究 • 上一篇    下一篇

网络用户在线评论的主题图谱构建及可视化研究 ——以酒店用户评论为例 

  

  • 出版日期:2021-09-01 发布日期:2021-10-21

  • Online:2021-09-01 Published:2021-10-21

摘要: 【目的/意义】网络用户在线评论是用户对某产品或服务机构体验感知的反馈,对网络用户在线评论的文
本挖掘是情报分析的重要内容。【方法
/过程】为了更有效从海量网络用户在线评论文本中挖掘用户感兴趣的信息,
本研究爬取
TripAdvisor网站四大城市的酒店用户在线评论,基于主题图谱理论和文本聚类算法构建网络用户在线
评论的聚类模型,通过图谱可视化揭示不同地区酒店用户观点差异,并分析不同图谱的社会网络特征。【结果
/
论】研究发现酒店用户最关注的是服务,其次是酒店的环境和位置。本研究能够快速挖掘酒店用户关注内容,对帮
助酒店管理者了解用户住宿需求并以此提高用户满意度具有重要价值。【创新
/局限】本文结合主题图谱和文本挖
掘技术构建酒店用户在线评论主题图谱,在大数据文本主题聚类上显示出优越性。但本文仅分析
TripAdvisor网站
四个城市中部分酒店的用户在线评论,数据面覆盖不够广泛。

Abstract: Purpose/significanceOnline user reviews are feedback on the user's perception of the experience of a product or service.Text mining of online comments is an important part of intelligence analysis.Method/processIn order to mine usersinterest from massive online comments and provide guidance for website manager to strengthen management, this paper crawls online reviews of ho⁃tel users in four cities on TripAdvisor website and uses text clustering algorithm to construct the clustering map based on the theory of topic map. Map visualization reveals the differences of hotel users' views in different regions. Finally, the features of social networks and the centrality of keywords in different maps are analyzed.Result/conclusionThis study found that hotel users are most con⁃
cerned about the service, followed by the hotel environment and location. The research can quickly explore hotel users' concerns, help hotel managers understand the needs of users for accommodation and in consequence improve user satisfaction.
Innovation/limitationThis paper combines topic map and text mining technology to construct the topic map of hotel usersonline reviews, which shows supe⁃riority in big data text topic clustering. However, this paper only analyzes the online reviews of some hotels in four cities on TripAdvi⁃sor, therefore the data coverage is not extensive enough.