情报科学 ›› 2021, Vol. 39 ›› Issue (8): 78-85.

• 业务研究 • 上一篇    下一篇

基于BERT-BiLSTM模型的舆情监测方法及实证研究——以研究生招生考试为例 

  

  • 出版日期:2021-08-01 发布日期:2021-08-05

  • Online:2021-08-01 Published:2021-08-05

摘要: 【目的/意义】教育招生考试备受社会各界关注,极易触发舆情事件。及时监测并准确研判相关网络信息传
播发展态势,发现潜在舆情并处置应对,对于保障考试安全和维护学校声誉具有重要意义。【方法
/过程】采集研究
生复试期间主流媒体社交平台数据,将
BERT语言训练模型同BiLSTM相结合,构建深度神经网络模型,对文本的
情感极性进行分析。用
TextRank算法提取不同情感极性类属文本的热门主题词,监测潜在舆情并提出管理建议。
【结果
/结论】实证结果表明,该模型能够有效挖掘不同情感极性下的热门主题信息,从而发现潜在隐患以及可能发
生的舆情焦点,为高校网络舆情管控提供了方法参考和实践依据。【创新
/局限】与传统方法相比,基于BERT的预训
练语言模型可有效解决因数据量少而导致模型无法准确表示不同语句之间复杂关系的局限性,同时
BERT可对文
本进行双向建模,捕获不同句子之间的关系特点,提升对文本情感主题挖掘的准确性。

Abstract: Purpose/significanceEducation entrance examination is the focus of public attention, which is easy to trigger public opin⁃
ion events.It is very important to monitor and judge the development trend of related network information dissemination, discover po⁃tential public opinions and deal with them in time to ensure the safety of examination and maintain the reputation of universities.
Method/processBy combining BERT and BiLSTM to build a deep neural network model, this study analyzes the emotional polarity of the text of the mainstream media social platform data during the postgraduate re examination.TextRank algorithm is used to extract popular keywords of different emotional polarity generic texts, monitor potential public opinion and put forward management sugges⁃tions.Result/conclusionThe empirical results show that the model can effectively extract the hot topic information under different emotions, find the potential hidden dangers and public opinion focus, and provide reference and practical basis for universities to moni⁃tor network public opinion.Innovation/limitationCompared with the traditional methods, the pre training language model based on
BERT can effectively solve the limitation that the model cannot accurately represent the complex relationship between different sen⁃tences due to the small amount of data. Meanwhile, BERT can model text in two ways, capture the characteristics of the relationship be⁃tween different sentences, and improve the accuracy of text emotional topic mining.