|
|
基于深度学习的以图搜图技术在照片档案管理中的应用研究 |
赵学敏1,田生湖2,张潇璐3 |
1 云南大学档案馆 昆明 650091 2 云南财经大学滇商研究院 昆明 650221 3 云南大学图书馆 昆明 650091 |
|
Research on Application of Image Search Technology in Photo Archives Management Based on Deep Learning |
Xuemin ZHAO1,Shenghu TIAN2,Xiaolu ZHANG3 |
1 Archives, Yunnan University, Kunming 650091 2 Yunnan Business Research Institute, Yunnan University of Finance and Economics, Kunming 650221 3 Library, Yunnan University, Kunming 650091 |
[1] |
杨红本. 档案管理理论与实务[M].上海:上海教育出版社,2016:6.
|
[2] |
王馨艺. 试析高校数码新闻照片的档案管理—— 以中国人民大学图片视频中心为例[J].兰台世界,2017(21):45-50.
|
[3] |
江媛媛. “以图搜图”技术在照片档案管理中的应用研究[J].档案与建设,2018(6):38-41.
|
[4] |
Kato T.Database architecture for content-based image retrieval[J]. International Society for Optimal Engineering,1992,1662:112-123.
|
[5] |
ImageNet网站[EB/OL]. [2019-02-12].http://www.image-net.org/
|
[6] |
Krizhevsky A,Sutskever I,Hinton G E.Imagenet classification with deep convolutional neural networks[C].Advances in neural information processing systems, 2012:1097-1105.
|
[7] |
Navneet Dalal.Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004,60(2):91-110.
|
[8] |
Dalal N, Triggs B.Histograms of oriented gradients for human detection[C]. international Conference on computer vision & Pattern Recognition(CVPR'05). IEEE Computer Society,2005,1:886-893.
|
[9] |
Zeiler M D,Fergus R.Visualizing and understanding convolutional n2n A. Very deep convolutional networks for large-scale image recognition[J].ArXiv preprint arXiv:1409.1556,2014.Motwani R. Approximate nearest neighbors:Towards removing the curse of dimensionality[C].Proceedings of the thirtieth annual ACM symposium on Theory of computing,1998:604-613.
|
[12] |
Gulli A,Pal S.Deep Learning with Keras[M]. Packt Publishing Ltd,2017.
|
[13] |
夏炎. 大规模图像数据中相似图像的快速搜索[D].中国科学技术大学,2015.
|
[14] |
刘宇韬. 广东省声像档案管理研究[D].兰州大学,2017.
|
[15] |
金晶,梁国灿. 数码照片档案管理的若干问题[J].中国档案,2005(7):30-32.
|
[16] |
马凌云. 基于Web的照片档案数据库建设研究[D].武汉大学,2004.
|
[17] |
胡湖. 基于人脸识别的照片档案挖掘利用架构[C].档案管理与利用—— 方法技术实践,2013.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|