|
|
Spatial and temporal scale effect on runoff in China: A review based on literature statistical analysis |
KE Qihua, ZHANG Keli |
State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Geography, Faculty of Geographical Science, Beijing Normal University, 100875, Beijing, China |
|
|
Abstract [Background] Scale effect on runoff is a frontier and hot issue in the field of hydrology and water resources. Since the end of the 1980s, many researchers in China have carried out a wide range of related studies across the country. However, the existing relevant review articles have not yet systematically and quantitatively analyzed the study of the scale effect on runoff in China from the overall progress and regional distribution.[Methods] Based on the 517 pieces of literature in six bibliometrics databases and through the method of word frequency analysis, we reviewed the studies of the scale effect on runoff in China. Specifically, we summarized the studies from the development history, research topics, research institutions, distributions of spatial and temporal scale, study areas, research methods, and mathematical models. The searching pattern in the CNKI database was Title=(((runoff OR hydrolog* OR flood OR "overland flow" OR "base flow" OR "stream flow" OR "river flow) AND (*scale OR *scaling) NEAR/1 (*temporal OR time* OR spatial* OR spatio* OR different OR multi* OR effect OR affect OR impact OR influence OR dependent OR transf* OR convers* OR analy* OR issue)).[Results] 1) The development history of relevant research could be divided into three stages:the initial stage from 1989 to 2000, the rapid development stage from 2001 to 2006, and the stable development stage after 2007. 2) Inter-yearly scale and rainfall event scale predominated in the temporal scales; watershed-scale predominated in the spatial scales. 3) Regarding the river basins, the Yellow River and Yangtze River were the main study areas. Regarding the soil and water conservation zones, considerable studies were conducted in the northwestern Loess Plateau, and then followed by the southwestern purple soil region, southern red soil region, and northern hilly and mountainous region. Regarding the terrain types, many studies were clustered in the plateau, and then followed by mountain, hill, and plain. Regarding the climate zones, most study areas were located in humid and semi-humid areas that had adequate rainfall as well as in warm temperate, subtropical, and mid-temperate zones that had a suitable temperature. 4) There were a wide variety of research methods, and different research methods and numerical models were applicable to different temporal and spatial scales.[Conclusions] Overall, the scale issue of runoff or hydrology still has an urgent need for further exploration and discussion. Research on the spatio-temporal scale issues of flood processes regarding extreme rainstorms should be further strengthened. Also, attention should be paid to the subjects of scale effect on hydrological connectivity, variable-scale hydrology model, and scale conversion. This review may provide basic data for a systematic understanding of the research status quo of the scale issue in hydrology in China, as well as directions for future research and work in the fields of hydrology and soil and water conservation.
|
Received: 31 August 2021
|
|
|
|
|
[1] |
刘纪根, 蔡强国, 刘前进, 等. 流域侵蚀产沙过程随尺度变化规律研究[J]. 泥沙研究, 2005, 17(4):7. LIU Jigen, CAI Qiangguo, LIU Qianjin, et al. Study on the regularity of sediment yield processes in catchments under different scales[J]. Journal of Sediment Research, 2005, 17(4):7.
|
[2] |
倪九派. 三峡库区水土流失空间尺度效应及其尺度转换研究[D]. 重庆:西南大学, 2005:1. NI Jiupai. Effect of spatial scale and scaling on soil and water loss in Three Gorges Reservoir Area[D]. Chongqing:Southwest University, 2005.
|
[3] |
刘春蓁. 关于水文气象学研究中的时空尺度问题[J]. 气象科技, 1989, 9(2):54. LIU Chunzhen. Spatio-temporal scale in the study of Hydrometeorology[J]. Meteorological Science and Technology, 1989, 9(2):54.
|
[4] |
张光科, 刘东, 方铎. 山区流域坡面径流侵蚀和泥沙输移分析[J]. 四川联合大学学报(工程科学版), 1997, 1(6):12. ZHANG Guangke, LIU Dong, FANG Duo. A study of erosion and sediment transport on the hillslopes surface in mountain watershed[J]. Journal of Sichuan University (Engineering Science Edition), 1997, 1(6):12.
|
[5] |
陈国祥, 汤立群. 流域尺度与治理对产流模式的影响分析研究[J]. 土壤侵蚀与水土保持学报, 1996, 2(1):22. CHEN Guoxiang, TANG Liqun. Study on the runoff-generating model influenced by controlling and scale[J]. Journal of Soil Erosion and Soil and Water Conservation, 1996, 2(1):22.
|
[6] |
尤卫红, 何大明. 澜沧江月径流量变化的相关性和多时间尺度特征[J]. 云南大学学报:自然科学版, 2005, 27(4):314. YOU Weihong, HE Daming. Correlation and multi-timescale characteristics of the monthly variations for Lancang River flow in the region of Yunnan[J]. Journal of Yunnan University (Natural Sciences Edition), 2005, 27(4):314.
|
[7] |
赵辉, 郭索彦, 解明曙, 等. 不同尺度流域日径流分形特征[J]. 应用生态学报, 2011, 22(1):159. ZHAO Hui, GUO Suoyan, XIE Mingshu, et al. Fractal characteristics of daily discharge in different scales watersheds[J]. Chinese Journal of Applied Ecology, 2011, 22(1):159.
|
[8] |
王平, 李浩, 陈强, 等. 典型黑土区不同尺度观测场地融雪径流[J]. 水土保持通报, 2014, 34(5):244. WANG Ping, LI Hao, CHEN Qiang, et al. Different scale observation sites of snow melt runoff in typical black soil area[J]. Bulletin of Soil and Water Conservation, 2014, 34(5):244.
|
[9] |
崔玉环, 叶柏生, 王杰, 等. 乌鲁木齐河源1号冰川水文断面不同时间尺度径流估算[J]. 干旱区资源与环境, 2013, 27(7):119. CUI Yuhuan, YE Baisheng, WANG Jie, et al. The runoff simulations for the Glacier No.1 hydrologic section at the headwaters of the Urumqi river on the different timescales[J]. Journal of Arid Land Resources and Environment, 2013, 27(7):119.
|
[10] |
刘时城. 延河流域不同尺度水文连通性研究[D]. 陕西杨凌:西北农林科技大学, 2017:1. LIU Shicheng. Research on hydrological connectivity at different scales in Yanhe river catchment[D]. Yangling, Shaanxi:Northwest A&F University, 2017:1.
|
[11] |
曹文洪, 张启舜, 姜乃森. 黄土地区一次暴雨产沙数学模型的研究[J]. 泥沙研究, 1994, 6(1):1. CAO Wenhong, ZHANG Qishun, JIANG Naiseng. The study on mathematical model for sediment yields caused by one storm in loess zone[J]. Journal of Sediment Research, 1994, 6(1):1.
|
[12] |
闫云霞, 许炯心, Marwan HASSON, 等. 长江流域侵蚀产沙尺度效应的区域分异[J]. 山地学报, 2011, 29(2):141. YAN Yunxia, XU Jiongxin, Marwan HASSON, et al. Spatial variation of scale effects of sediment yield in the Yangtze River basin[J]. Journal of Mountain Science, 2011, 29(2):141.
|
[13] |
LI Jiake, MU Cong, DENG Chenning, et al. Hydrologic-environmental effects of sponge city under different spatial scales[J]. Journal of Water Reuse and Desalination, 2020, 10(1):45.
|
[14] |
方海燕. 黄土丘陵沟壑区产流产沙尺度效应及泥沙输移动态研究[D]. 北京:中国科学院地理科学与资源研究所, 2008:1. FANG Haiyan. Study on the scale effect of runoff and sediment productions and sediment transport dynamics in hilly loess region on the Loess Plateau[D]. Beijing:Institute of Geographic Sciences and Natural Resources Research, CAS, 2008:1.
|
[15] |
张培. 紫色土丘陵区小流域径流和泥沙过程对降雨的多尺度响应规律研究[D]. 重庆:西南大学, 2014:1. ZHANG Pei. Purple soil hilly region of small watershed runoff and sediment processes on multi-scale study of the response of precipitation[D]. Chongqing:Southwest University, 2014:1.
|
[16] |
万智巍, 贾玉连, 洪祎君, 等. 基于完备集合经验模态分解的赣江径流多尺度变化特征[J]. 水力发电, 2018, 44(8):18. WAN Zhiwei, JIA Yulian, HONG Yijun, et al. Multi-scale variation characteristics of Ganjiang River's runoff based on CEEMD[J]. Water Power, 2018, 44(8):18.
|
[17] |
王兆礼, 陈晓宏, 杨涛. 东江流域博罗站天然年径流量序列多时间尺度分析[J]. 中国农村水利水电, 2010, 52(2):21. WANG Zhaoli, CHEN Xiaohong, YANG Tao. Multiple time scale analysis of natural annual runoff series at the Boluo Station in the Dongjiang River Basin[J]. China Rural Water and Hydropower, 2010, 52(2):21.
|
[18] |
林炳青. 流域景观格局变化对不同时间尺度径流影响的SWAT模拟分析[D]. 福州:福建师范大学, 2014:1. LIN Bingqing. Simulations and analysis of landscape pattern change impacts on catchment runoff at different temporal scales based on SWAT[D]. Fuzhou:Fujian Normal University, 2014:1.
|
[19] |
CHEN Yichin, WU Yinghsin, SHEN Chewei, et al. Dynamic modeling of sediment budget in Shihmen reservoir watershed in Taiwan[J]. Water, 2018, 10(12):1808.
|
[20] |
毛玉娜, 叶爱中, 徐静. 辽河流域径流过程模拟的空间尺度效应分析[J]. 水文, 2014, 34(2):19. MAO Yuna, YE Aizhong, XU Jing. Spatial scale analysis of runoff simulation for Liaohe River Basin[J]. Journal of China Hydrology, 2014, 34(2):19.
|
[21] |
王乐平, 孙雪岚. 黄河下游径流输沙多时间尺度特征及其耦合分析[J]. 水利水电技术, 2016, 47(2):58. WANG Leping, SUN Xuelan. Multi-timescale characteristics of runoff and sediment discharge along Lower Yellow River and their coupling analysis[J]. Water Resources and Hydropower Engineering, 2016, 47(2):58.
|
[22] |
汪跃军. 淮河干流蚌埠水文站年径流系列多时间尺度分析[J]. 水利技术监督, 2007, 15(1):37. WANG Yuejun. Multiple time dimensional analysis for annual run-off corollary of Bengbu hydrographic station of mainstream of Huaihe River[J]. Technical Supervision in Water Resources, 2007, 15(1):37.
|
[23] |
FENG Ping, LI Jianzhu. Scale effects on runoff generation in meso-scale and large-scale sub-basins in the Luanhe River Basin[J]. Hydrology and Earth System Sciences Discussions, 2008, 5(3):1511.
|
[24] |
刘佳凯, 张振明, 鄢郭馨, 等. 潮白河流域径流对降雨的多尺度响应[J]. 中国水土保持科学, 2016, 14(4):50. LIU Jiakai, ZHANG Zhenming, YAN Guoxin, et al. Multi-scale analysis on precipitation-runoff relationship in Chaobaihe Basin[J]. Science of Soil and Water Conservation, 2016, 14(4):50.
|
[25] |
秦永胜, 余新晓, 陈丽华, 等. 北京密云水库流域水源保护林区径流空间尺度效应的研究[J]. 生态学报, 2001, 21(6):913. QIN Yongsheng, YU Xinxiao, CHEN Lihua, et al. Spatial scale effects of runoff on the water resource conservation forest watershed within the Miyun reservoir basin[J]. Acta Ecologica Sinica, 2001, 21(6):913.
|
[26] |
郭静, 粟晓玲. 石羊河流域出山口径流序列的多时间尺度特征[J]. 西北农林科技大学学报(自然科学版), 2013, 41(6):213. GUO Jing, SU Xiaoling. Multiple time scale characteristics of mountainous runoff series in Shiyang river basin[J]. Journal of Northwest A&F University (Natural Science Edition), 2013, 41(6):213.
|
[27] |
薛浩, 于瑞宏, 张艳霞, 等. 内蒙古典型草原区流域在不同时间尺度下的径流深动态变化:以锡林河流域为例[J]. 中国水土保持科学, 2019, 17(2):27. XUE Hao, YU Ruihong, ZHANG Yanxia, et al. Temporal variation of runoff depth in the drainage basin of typical grassland area in Inner Mongolia:A case study of Xilin River Basin[J]. Science of Soil and Water Conservation, 2019, 17(2):27.
|
[28] |
LYU Jiqiang, SHEN Bing, LI Huaien. Characterizing hydrologic response at multiple time scales for Tarim River basin headstreams[J]. Journal American Water Works Association, 2015, 107(5):E234.
|
[29] |
李鸿雁, 姜珊, 李鹏. 嫩江流域径流的可预报性及其时间尺度分析[J]. 水文, 2009, 29(6):20. LI Hongyan, JIANG Shan, LI Peng. Analysis of predictability and time scales for the Nenjiang River runoff[J]. Journal of China Hydrology, 2009, 29(6):20.
|
[30] |
WANG Yao, HOU Lisheng, CAI Yunlong. Scale effects of eroded sediment transport in Wujiang River Basin, Guizhou province, China[J]. Journal of Groundwater Science and Engineering, 2017, 5(2):182.
|
[31] |
朱靖轩, 刘雯, 李振炜, 等. 喀斯特流域径流对植被和气候变化的多尺度响应[J]. 生态学报, 2020, 40(10):3396. ZHU Jingxuan, LIU Wen, LI Zhenwei, et al. Multi-scale response of runoff to vegetation and climate change in karst watersheds[J]. Acta Ecologica Sinica, 2020, 40(10):3396.
|
[32] |
JIANG Chong, ZHANG Linbo, TANG Zhipeng. Multi-temporal scale changes of streamflow and sediment discharge in the headwaters of Yellow River and Yangtze River on the Tibetan Plateau, China[J]. Ecological Engineering, 2017, 102:240.
|
[33] |
邵骏, 袁鹏, 李秀峰. 岷江上游年径流变化的多时间尺度分析[J]. 东北水利水电, 2007, 25(6):52. SHAO Jun, YUAN Peng, LI Xiufeng. Multi-time dimension analysis of annual runoff variation in upstream of Minjiang river[J]. Water Resources & Hydropower of Northeast China, 2007, 25(6):52.
|
[34] |
邵骏, 袁鹏, 张文江, 等. 基于HHT变换的雅鲁藏布江径流多时间尺度分析[J]. 水电能源科学, 2009, 27(5):8. SHAO Jun, YUAN Peng, ZHANG Wenjiang, et al. Multi-temporal scales analysis of runoff series in Yarlung Zangbo River Based on Hilbert-Huang Transform[J]. Water Resources and Power, 2009, 27(5):8.
|
[35] |
谢国权, 丁志宏. 渭河年径流量多时间尺度分析的EMD方法[J]. 人民黄河, 2008, 30(8):36. XIE Guoquan, DING Zhihong. EMD method for multi-time-scale analysis of annual runoff of Weihe River[J]. Yellow River, 2008, 30(8):36.
|
[36] |
刘艳, 杨耘, 聂磊, 等. 玛纳斯河出山口径流EEMD-ARIMA预测[J]. 水土保持研究, 2017, 24(6):273. LIU Yan, YANG Yun, NIE Lei, et al. The EEMD-ARIMA prediction of runoff at mountain pass of Manas River[J]. Research of Soil and Water Conservation, 2017, 24(6):273.
|
[37] |
ZHANG Jinping, ZHAO Yong, LIN Xiaomin. Uncertainty analysis and prediction of river runoff with multi-time scales[J]. Water Science and Technology:Water Supply, 2017, 17(3):897.
|
[38] |
龚珏, 杜洪勋, 郑江坤, 等. 川北典型小流域产流对降雨的多时间尺度响应规律[J]. 长江流域资源与环境, 2020, 29(6):1445. GONG Jue, DU Hongxun, ZHENG Jiangkun, et al. Response of runoff to rainfall in multi-time scale of typical small watershed in northern Sichuan province[J]. Resources and Environment in the Yangtze Basin, 2020, 29(6):1445.
|
[39] |
杨晓楠. 黄土高原多尺度景观格局对径流及输沙过程的影响[D]. 陕西杨凌:西北农林科技大学, 2019:1. YANG Xiaonan. Effects of landscape pattern on runoff and sediment in the Loess Plateau:A multi-scale study[D]. Yangling, Shaanxi:Northwest A&F University, 2019:1.
|
[40] |
ZHANG Jinping, XIAO Honglin, ZHANG Xin, et al. Impact of reservoir operation on runoff and sediment load at multi-time scales based on entropy theory[J]. Journal of Hydrology, 2019, 569:809.
|
[41] |
LI Xinjie, GAO Guoming, HU Tiesong, et al. Multiple time scales analysis of runoff series based on the chaos theory[J]. Desalination and Water Treatment, 2014, 52(13):2741.
|
[42] |
WANG Caiyuan, YANG Zhongshan, ZANG Ming, et al. Evolution characteristics and variability analyzation of rainfall and runoff based on time scale[J]. IOP Conference Series:Earth and Environmental Science, 2019, 358:22010.
|
[43] |
吴松柏. 坡面水力侵蚀过程中坡度与尺度效应研究[D]. 武汉:武汉大学, 2017:1. WU Songbai. Study on the slope and scale effects during rainfall-runoff and soil erosion processes[D]. Wuhan:Wuhan University, 2017:1.
|
[44] |
王志杰, 简金世, 焦菊英, 等. 基于RUSLE的松花江流域不同侵蚀类型区泥沙输移比估算[J]. 水土保持研究, 2013, 20(5):50. WANG Zhijie, JIAN Jinshi, JIAO Juying, et al. Estimation of sediment delivery ratio in different soil erosion regions in the Songhua River Basin based on RUSLE[J]. Research of Soil and Water Conservation, 2013, 20(5):50.
|
[45] |
程琳. 基于GIS和经验模型的中尺度流域土壤侵蚀时空动态分析:以孤山川流域为例[D]. 陕西杨凌:西北农林科技大学, 2010:1. CHENG Lin. Spatio-temporal dynamic analysis of soil erosion in meso-scale watershed based on GIS:A case study of Gushanchuan watershed[D]. Yangling, Shaanxi:Northwest A&F University, 2010:1.
|
[46] |
林峰, 陈桂芳. HEC-HMS分布式水文模型的时间尺度效应研究[J]. 吉林师范大学学报(自然科学版), 2009, 30(3):132. LIN Feng, CHEN Guifang. Effects of time step of HEC-HMS on hydrological processes modeling[J]. Jilin Normal University Journal (Natural Science Edition), 2009, 30(3):132.
|
[47] |
夏圣伟. 基于分布式SEDD模型的赣江河道输沙量对流域森林植被恢复的响应研究[D]. 南昌:南昌工程学院, 2018:1. XIA Shengwei. The response of sediment discharge on reforestration in Ganjiang River Basin based on distributed SEDD model[D]. Nanchang:Nanchang Institute of Technology, 2018:1.
|
[48] |
张东海. 基于SWAT模型水文过程的尺度效应分析[D]. 西安:陕西师范大学, 2013:1. ZHANG Donghai. Scale effect analysis of hydrological processes based on SWAT model[D]. Xi'an:Shaanxi Normal University, 2013:1.
|
[49] |
高超, 金高洁. SWIM水文模型的DEM尺度效应[J]. 地理研究, 2012, 31(3):399. GAO Chao, JIN Gaojie. Effects of DEM resolution on results of the SWIM hydrological model in the Changtaiguan basin[J]. Geographical Research, 2012, 31(3):399.
|
[50] |
GAO Chao, YAO Mengting, WANG Yanjun, et al. Hydrological model comparison and assessment:Criteria from catchment scales and temporal resolution[J]. Hydrological Sciences Journal, 2016, 61(10):1941.
|
[51] |
李大洋, 梁忠民, 周艳. 基于MIKE SHE的洪水模拟与尺度效应分析[J]. 水力发电, 2019, 45(5):28. LI Dayang, LIANG Zhongming, ZHOU Yan. Flood simulation and scaling effect analysis based on MIKE SHE[J]. Water Power, 2019, 45(5):28.
|
[52] |
盛晟, 陈华, 林康聆, 等. 不同时空尺度下新安江模型参数敏感性分析[J]. 水资源研究, 2018, 7(6):541. SHENG Sheng, CHEN Hua, LIN Kangling, et al. Parameters sensitivity analysis of the Xin'anjiang Model under different temporal and spatial scales[J]. Journal of Water Resources Research, 2018, 7(6):541.
|
[53] |
CHEN Ying, XU Chongyu, CHEN Xingwei, et al. Uncertainty in simulation of land-use change impacts on catchment runoff with multi-time scales based on the comparison of the HSPF and SWAT models[J]. Journal of Hydrology, 2019, 573:486.
|
[54] |
REN Liliang, ZHANG Wei, LI Chunhong, et al. Comparison of runoff parameterization schemes with spatial heterogeneity across different temporal scales in semihumid and semiarid regions[J]. Journal of Hydrologic Engineering, 2008, 13(5):400.
|
|
|
|