[an error occurred while processing this directive] | [an error occurred while processing this directive]
Interobserver variability in the delineation of the target volume based on supine and prone simulation 3DCT for external-beam partial breast irradiation after breast-conserving surgery
Yu Ting1, Li Yankang2, Li Fengxiang3, Wang Jinzhi3, Wang Wei3, Xu Min3, Zhang Yingjie3, Li Jianbin3
1Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300070, China; 2Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China; 3Department of Radiation Oncology, Shandong Cancer Hospital and Institute (Shandong Cancer Hospital), Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, ChinaYu Ting and Li Yankang are contributed equally to the article
AbstractObjective To explore the interobserver variabilities in the delineation of the target volume using simulation three-dimensional computed tomography (3DCT) between the supine and prone positions for external-beam partial breast irradiation (EB-PBI) after breast-conserving surgery (BCS). Methods Twenty-seven breast cancer patients who were scheduled to receive EB-PBI after BCS from July 2016 to April 2017 were enrolled in this study. All patients underwent axial 3DCT simulation scanning in the supine and prone positions during free breathing. Based on two different simulation 3DCT acquired, the gross target volume (TB) formed by using surgical clips and the clinical target volume (CTV) were delineated by five radiologists using specific guidelines. The following parameters including the target volume, coefficient of variations (COV) and matching degree (MD) were calculated to analyze the interobserver variability. Twenty-seven breast cancer patients who were scheduled to receive EB-PBI after BCS from July 2016 to April 2017 were enrolled in this study. Results Whether in the supine or prone position, the interobserver variabilities for TB and CTV were statistically significant (P<0.001,P=0.001,P<0.001,P=0.001). And the intersection of CTV in the prone position was 5.79 cm3 greater than that in the supine position (P=0.011). The interobserver variability of COVCTV in the prone positionwas significantly lower than that in the supine position (P=0.014). And the interobserver variabilities of MDTBTB and MDTBCTV in the prone positionwere statistically greater than those in the supine position, respectively (P<0.001,P= 0.001). Conclusions When delineating the target volume of EB-PBI in the prone position, the interobsever variability can be reduced compared with that in the supine position. Hence, it is more reasonable to carry out EB-PBI in the prone position in free breathing.
Fund:National Key Research and Development Program (2016YFC0904700);Youth Program of National Natural Science Foundation of China (81703038);Shandong Province Key Research and Development Program (2017GSF18102);Shandong Province Natural Science Foundation (ZR2017PH006)
Corresponding Authors:
Li Jianbin, Email:lijianbin@msn.com
Cite this article:
Yu Ting,Li Yankang,Li Fengxiang et al. Interobserver variability in the delineation of the target volume based on supine and prone simulation 3DCT for external-beam partial breast irradiation after breast-conserving surgery[J]. Chinese Journal of Radiation Oncology, 2020, 29(6): 432-436.
Yu Ting,Li Yankang,Li Fengxiang et al. Interobserver variability in the delineation of the target volume based on supine and prone simulation 3DCT for external-beam partial breast irradiation after breast-conserving surgery[J]. Chinese Journal of Radiation Oncology, 2020, 29(6): 432-436.
[1] van Mourik AM, Elkhuizen PH, Minkema D, et al. MultⅡnstitutional study on target volume delineation variation in breast radiotherapy in the presence of guidelines[J]. Radiother Oncol, 2010,94(3):286-291. DOI:10.1016/j.radonc.2010.01.009. [2] Vinod SK, Jameson MG, Min M, et al. Uncertainties in volume delineation inradiation oncology:a systematic review and recommendations for future studies[J]. Radiother Oncol, 2016, 121(2):169-179. DOI:10.1016/j.radonc.2016.09.009. [3] 徐敏,李建彬,于志强,等.勾画标准培训对乳腺癌保乳术后放疗靶区勾画的作用[J].中华放射肿瘤学杂志,2012, 21(6):534-538. DOI:10.3760/cma.j.issn.1004-4221.2012.06.015. Xu M, Li JB, Yu ZQ, et al. The effect of standard training on target mapping of radiotherapy after breast cancer breast conserving surgery[J]. Chin J Radiat Oncol, 2012, 21(6):534-538. DOI:10.3760/cma.j.issn.1004-4221.2012.06.015. [4] 王玮,李建彬,邢军,等.保乳术后放疗四维CT呼气末术腔勾画影响因素分析[J].中华放射肿瘤学杂志,2013,22(5):357-360. DOI:10.3760/cma.j.issn.1004-4221.2013.05.005. Wang W, Li JB, Xing J, et al. Analysis of influencing factors on end expiratory cavity delineation of four-dimensional CT after breast conserving surgery[J]. Chin J Radiat Oncol, 2013, 22(5):357-360. DOI:10.3760/cma.j.issn.1004-4221.2013.05.005. [5] Lind PA, Wennberg B, Gagliardi G, et al. Pulmonary complications following different radiotherapy techniques for breast cancer, and the association to irradiated lung volume and dose[J]. Lancet Oncol, 2005, 6(8):557-565. DOI:10.1023/a:1012292019599. [6] Darby SC, McGale P, Taylor CW, et a1. Long term mortality from heart disease and lung cancer after radiotherapy for early breast cancer:Prospective cohort study of about 300 000 women in USSEER cancer registries[J]. Lancet Oncol, 2005, 6(8):557-565. DOI:10.1016/S1470-2045(05)70251-5. [7] Griem KL, Fetherston P,Kuznetsova M, et al. There-dimensional photon dosimetry:a comparison of treatment of the intact breast in the supine and prone position[J]. Int J Radiat Oncol Biol Phys, 2003, 57(3):891-899. DOI:10.1016/s0360-3016(03)00723-5. [8] McKinnon R, Christie D, Peres H, et al. The prone technique for breast irradiation-is it ready for clinical trials?[J]. Breast, 2009, 18(1):30-34. DOI:10.1016/j. breast.2008.09.006. [9] Veldeman L, Speleers B, Bakker M, et al. Preliminary results on setup precision of prone-lateral patient positioning for whole breast irradiation[J]. Int J Radiat Oncol Biol Phys, 2010, 78(1):111-118. DOI:10.1016/j.ijrobp.2009.07.1749. [10] Anbumani S, Palled SR, Prabhakar GS, et al. Accelerated partial breast irradiation using external beam radiotherapy-A feasibility study based on dosimetric analysis[J]. Rep Pract Oncol Radiother, 2012, 17(4):200-206. DOI:10.1016/j.rpor.2012.04.002. [11] Weiss E, Hess CF. The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy[J]. Strahlenther Onkol, 2003, 179(1):21-30. DOI:10.1007/s00066-003-0976-5. [12] Petersen RP, Truong PT, Kader HA, et al. Target volume delineation for partial breast radiotherapy planning:clinical characteristics associated with low interobserver concordance[J]. Int J Radiat Oncol Biol Phys, 2007, 69(1):41-48. DOI:10.1016/j.ijrobp.2007.01.070. [13] . Hurkmans CW, Borger JH, Pieters BR, et al. Variability in target volume delineation on CT scans of the breast[J]. Int J Radiat Oncol Biol Phys, 2001, 50:1366-1372. DOI:10.1016/s0360-3016(01)01635-2. [14] Wong EK, Truong PT, Kader HA, et al. Consistency in seroma contouring for partial breast radiotherapy:impact of guidelines[J]. Int J Radiat Oncol Biol Phys, 2006, 66(2):372-376. DOI:10.1016/j.ijrobp.2006.05.066. [15] Pitkanen MA, Holli KA, Ojala AT, et al. Quality assurance in radiotherapy of breast cancer—variability in planning target volume delineation[J]. Acta Oncol, 2001, 40(1):50-55. DOI:10.1080/028418601750071055. [16] Sanders KE, Komaki R, Buchholz TA. Target delineation and treatment planning in breast conserving therapy[J]. Rays, 2003, 28(2):237-245. [17] Struikmans H, Warlam-Rodenhuis C, Stam T, et al. Interobserver variability of clinical target volume delineation of glandular breast tissue and of boost volume in tangential breast irradiation[J]. Radiother Oncol, 2005, 76(2):293-299. DOI:10.1016/j.radonc.2005.03.029. [18] Landis DM, Luo W, Song J, et al. Variability among breast radiation oncologists in delineation of the postsurgical lumpectomy cavity[J]. Int J Radiat Oncol Biol Phys, 2007, 67(5):1299-1308. DOI:10.1016/j.ijrobp.2006.11.026. [19] Li XA, Tai A, Arthur DW, et al. Variability of target and normal structure delineation for breast cancer radiotherapy:an RTOG multi-institutional and multiobserver study[J]. Int J Radiat Oncol Biol Phys, 2009, 73(3):944-951. DOI:10.1016/j.ijrobp.2008.10.034. [20] Merchant TE, McCormick B. Prone position breast irradiation[J]. Int J Radiat Oncol Biol Phys, 1994, 30(1):197-203. [21] Guo B, Li J, Wang W, et al. Interobserver variability in the delineation of the tumour bed using seroma and surgical clips based on 4DCT scan for external-beam partial breast irradiation[J]. Radiat Oncol, 2015, 10(1):66. DOI:10.1186/s13014-015-0370-3. [22] Yu T, Xu M, Sun T, et al. External-beam partial breast irradiation in a supine versus prone position after breast-conserving surgery for Chinese breast cancer patients[J]. Sci Rep, 2018, 8(1):15354. DOI:10.1038/s41598-018-33741-z. [23] 铁剑,张健,张艺宝,等. 早期乳腺癌保乳术后仰卧及俯卧位调强放疗的剂量学比较[J]. 中华放射医学与防护杂志, 2014, 34(12):946-950. DOI:10.3760/cma.j.issn.0254-5098.2014.12.020. Tie J, Zhang J,Zhang YB, et al. Dosimetric comparison of IMRT in supine and prone position after breast conserving surgery for early breast cancer[J]. Chin J Radiol Med Protect, 2014, 34(12):946-950. DOI:10.3760/cma.j.issn.0254-5098.2014.12.020. [24] Pogson EM, Delaney GP, Ahern V. Comparison of magnetic resonance imaging and computed tmography for breast target volume delineation in prone and supine positions[J]. Int J Radiat Oncol Biol Phys, 2016, 96(4):905-912. DOI:10.1016/j.ijrobp.2016.08.002. [25] Dzhugashvili M, Tournay E, Pichenot C, et al.3D-conformal accelerated partial breast irradiation treatment planning:the value of surgical clips in the delineation of the lumpectomy cavity[J]. Radiat Oncol, 2009, 4(1):70. DOI:10.1186/1748-717X-4-70. [26] Kim H,Kim J. Evaluation of the anatomical parameters for normal tissue sparing in the prone position radiotherapy with small sized left breasts[J]. Oncotarget, 2016, 7(44):72211-72218. DOI:10.18632/oncotarget.12662. [27] Fernandez-Lizarbe E, Montero A, Polo A, et al. Pilot study of feasibility and dosimetric comparison of prone versus supine breast radiotherapy[J]. Clin Transl Oncol, 2013, 15(6):450-459. DOI:10.1007/s12094-012-0950-8. [28] Lymberis SC, deWyngaert JK, Parhar P, et al. Prospective assessment of optimal individual position (prone versus supine) for breast radiotherapy:volumetric and dosimetric correlations in 100 patients[J]. Int J Radiat Oncol Biol Phys, 2012, 84(4):902-909. DOI:10.1016/j.ijrobp.2012.01.040. [29] Verhoeven K, Sweldens C, Petillion S, et al. Breathing adapted radiation therapy in comparison with prone position to reduce the doses to the heart, left anterior descending coronary artery, and contralateral breast in whole breast radiation therapy[J]. Pract Radiat Oncol, 2014, 4(2):123-129. DOI:10.1016/j.prro.2013.07.005.