AbstractObjective To explore the feasibility and advantages of different MRI sequences in delineating target volumes in lung cancer with obstructive pneumonia or atelectasis (OC). Methods Fourteen patients with OC underwent CT localization and MRI scan. CT, T1WI, fat suppression T2WI, LAVA, LAVA+C images were collected respectively. CT and MRI images were fused in the treatment planning system, and GTV-p was target delineated on CT and MRI respectively. Results CT showed tumor and OC boundaries in 2 patients, fat suppression T2WI showed tumor and OC boundaries in 10 patients, LAVA showed tumor and OC boundaries in 12 patients, and LAVA+C showed tumor and OC boundaries in 10 patients. Fat suppression T2WI, LAVA, and LAVA+C sequences showed similar resolving ability (P>0.05). The GTV of T2WI, LAVA, and LAVA+C sequences decreased significantly compared with ST-GTV (P<0.05), and T2WI_GTV and LAVA_GTV were similar (P>0.05). The GTV value of LAVA+C was the smallest among all sequences. Conclusions The application of MRI fat compression T2WI, LAVA, and LAVA+C sequences to the radiotherapy target volume delineation in lung cancer patients with OC improved the accuracy, among which the boundary resolution of LAVA was better than that of fat compression T2WI, and LAVA+C showed the best effect on tiny blood vessels.
Corresponding Authors:
Li Guang, Email:13804058616@163.com
Cite this article:
He Tianyu,Li Sihan,Li Guang. The value of MRI enhanced scan sequence in the radiotherapy target volume delineation in lung cancer with obstructive pneumonia/atelectasis[J]. Chinese Journal of Radiation Oncology, 2020, 29(5): 369-377.
He Tianyu,Li Sihan,Li Guang. The value of MRI enhanced scan sequence in the radiotherapy target volume delineation in lung cancer with obstructive pneumonia/atelectasis[J]. Chinese Journal of Radiation Oncology, 2020, 29(5): 369-377.
[1] Qi LP, Zhang XP, Tang L, et al. Using diffusion-weighted MR imaging for tumor detection in the collapsed lung:a preliminary study[J]. Eur Radiol, 2009, 19(2):333-341. DOI:10.1007/s00330-008-1134-3.
[2] Zhang X, Fu Z, Gong G, et al. Implementation of diffusion-weighted magnetic resonance imaging in target delineation of central lung cancer accompanied with atelectasis in precision radiotherapy[J]. Oncol Lett, 2017, 14(3):2677-2682. DOI:10.3892/ol.2017.6479.
[3] Karki K, Saraiya S, Hugo GD, et al. Variabilities of magnetic resonance imaging-, computed tomography-, and positron emission tomography-computed tomography-based tumor and lymph node delineations for lung cancer radiation therapy planning[J]. Int J Radiat Oncol Biol Phys, 2017, 99(1):80-89. DOI:10.1016/j.ijrobp.2017.05.002.
[4] Usuda K, Zhao XT, Sagawa M, et al. Diffusion-weighted imaging is superior to positron emission tomography in the detection and nodal assessment of lung cancers[J]. Ann Thorac Surg, 2011, 91(6):1689-1695. DOI:10.1016/j.athoracsur.2011.02.037.
[5] Fleckenstein J, Jelden M, Kremp S, et al. The impact of diffusion-weighted MRI on the definition of gross tumor volume in radiotherapy of non-small-cell lung cancer[J]. PLoS One, 2016, 11(9):e0162816. DOI:10.1371/journal.pone.0162816.
[6] Martin DR, Lauenstein T, Kalb B, et al. Liver MRI and histological correlates in chronic liver disease on multiphasegadolinium-enhanced 3D gradient echo imaging[J]. JMRI, 2012, 36(2):422-429. DOI:10.1002/jmri.23668.
[7] Matoba M, Tonami H, Kondou T, et al. Lung carcinoma:diffusion-weighted MR imaging—preliminary evaluation with apparent diffusion coefficient[J]. Radiology, 2007, 243(2):570-577. DOI:10.1148/radiol.2432060131.
[8] Li HH, Zhu H, Yue L, et al. Feasibility of free-breathing dynamic contrast-enhanced MRI of gastric cancer using a golden-angle radial stack-of-stars VIBE sequence:comparison with the conventional contrast-enhanced breath-hold 3D VIBE sequence[J]. Euro Radiol, 2018, 28(5):1891-1899. DOI:10.1007/s00330-017-5193-1.
[9] Silvestri GA, Gould MK, Margolis ML, et al. Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd ed.)[J]. Chest,2007,132(3 Suppl):178s-201s.DOI: 10.1378/chest.07-1360.
[10] Deng Y, Li X, Lei Y, et al. Use of diffusion-weighted magnetic resonance imaging to distinguish between lung cancer and focal inflammatory lesions:a comparison of intravoxel incoherent motion derived parameters and apparent diffusion coefficient[J]. Acta Radiol, 2016, 57(11):1310-1317. DOI:10.1177/0284185115586091.
[11] Yang RM, Li L, Wei XH, et al. Differentiation of central lung cancer from atelectasis:comparison of diffusion-weighted MRI with PET/CT[J]. PLoS One, 2013, 8(4):e60279. DOI:10.1371/journal.pone.0060279.
[12] Ford EC, Herman J, Yorke E, et al. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy[J]. J Nucl Med, 2009, 50(10):1655-1665. DOI:10.2967/jnumed.108.055780.
[13] Flechsig P, Rastgoo R, Kratochwil C, et al. Impact of computer-aided CT and PET analysis on non-invasive T staging in patients with lung cancer and atelectasis[J]. Mol Imag Biol, 2018, 20(6):1044-1052. DOI:10.1007/s11307-018-1196-9.
[14] 杨正汉, 冯逢, 王霄英. 磁共振成像技术指南——检查规范、临床策略及新技术(修订版)[M].2版. 北京:人民军医出版社, 2010.
Yang ZH, Feng F, Wang XY. Technical guidelines for magnetic resonance imaging-examination specifications, clinical strategies and new technologies (Revised) [M]. 2nd ed. Beijing: People's Military Medical Publishing House, 2010.
[15] Yang ZF, Sun SQ, Chen YL, et al. Application of single voxel 1H magnetic resonance spectroscopy in hepatic benign and malignant lesions[J]. Med Sci Monit, 2016, 22:5003-5010. DOI:10.12659/msm.902177.
[16] Chen Y, Yang XY, Wen ZQ, et al. Fat-suppressed gadolinium-enhanced isotropic high-resolution 3D-GRE-T1WI for predicting small node metastases in patients with rectal cancer[J]. Cancer Imag, 2018, 18(1):21. DOI:10.1186/s40644-018-0153-9.
[17] Samji K, Alrashed A, Shabana WM, et al. Comparison of high-resolution T1W 3D GRE (LAVA) with 2-point Dixon fat/water separation (FLEX) to T1W fast spin echo (FSE) in prostate cancer (PCa)[J]. Clin Imaging, 2016, 40(3):407-413. DOI:10.1016/j.clinimag.2015.11.023.