1The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524000, China; 2Shanghai Key Laboratory of Artificial Intelligence for Medical Image and Knowledge Graph, Shanghai 200050, China; 3Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences/Zhejiang Cancer Hospital, Zhejiang Provincial Key Laboratory of Radiation Oncology, Zhejiang Engineering Research Center of Precision Radiotherapy, Hangzhou 310022, China; 4Hangzhou Yitu Medical Technology Co., Ltd. Medical Research Institute, Hangzhou 330106, China; 5Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
Abstract:Objective To explore the main factors of hypothyroidism after radiotherapy and to identify the optimal thyroid dosimetric parameters by analyzing the dosimetric parameters of the thyroid. Methods The general clinical characteristics and dosimetric parameters of 206 patients with nasopharyngeal carcinoma treated in Cancer Hospital of University of Chinese Academy of Sciences were collected, and the correlation between them and the incidence of hypothyroidism was analyzed. Results The incidence of hypothyroidism in patients with nasopharyngeal carcinoma after radiotherapy was 50.49%(104/206). Univariate analysis showed that gender, N-stage, volume, mean dose, V20Gy, V25Gy, V30Gy, V35Gy, V40Gy, V45Gy of thyroid were associated with the incidence of hypothyroidism. Multivariate analysis demonstrated that volume (≤12.82cm3) and mean dose of thyroid were the independent risk factors of hypothyroidism. Mean dose of thyroid combined with volume could significantly predict the incidence of hypothyroidism after radiotherapy. Conclusion Mean dose of thyroid ≤ 47.21Gy is the optimal dosimetric parameter for radiation-induced hypothyroidism, especially the patients with thyroid volume ≤ 12.82 cm3 should pay more attention to the protection of thyroid gland during radiotherapy.
Zhou Ling,Chen Jia,Huang Shuang et al. Study of related factors of radiation-induced hypothyroidism in nasopharyngeal carcinoma[J]. Chinese Journal of Radiation Oncology, 2021, 30(1): 11-15.
[1] Lin JC, Jan JS, Hsu CY, et al. Phase Ⅲ study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma:positive effect on overall and progression-free survival[J]. J Clin Oncol, 2003, 21(4):631-637. DOI:10.1200/JCO.2003.06.158. [2] Huang WB, Chan J, Liu DL. Human papillomavirus and World Health Organization type Ⅲ nasopharyngeal carcinoma:multicenter study from an endemic area in Southern China[J]. Cancer, 2018, 124(3):530-536. DOI:10.1002/cncr.31031. [3] Huang TL, Chien CY, Tsai WL, et al. Long-term late toxicities and quality of life for survivors of nasopharyngeal carcinoma treated with intensity-modulated radiotherapy versus non-intensity-modulated radiotherapy[J]. Head Neck, 2016, 38(Suppl 1):E1026-E1032. DOI:10.1002/hed.24150. [4] Lee V, Chan SY, Choi CW, et al. Dosimetric predictors of hypothyroidism after radical intensity-modulated radiation therapy for non-metastatic nasopharyngeal carcinoma[J]. Clin Oncol (R Coll Radiol), 2016, 28(8):e52-e60. DOI:10.1016/j.clon.2016.05.004. [5] Mcdowell LJ, Rock K, Xu W, et al. Long-term late toxicity, quality of life, and emotional distress in patients with nasopharyngeal carcinoma treated with intensity modulated radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2018, 102(2):340-352. DOI:10.1016/j.ijrobp.2018.05.060. [6] Lertbutsayanukul C, Kitpanit S, Prayongrat A, et al. Validation of previously reported predictors for radiation-induced hypothyroidism in nasopharyngeal cancer patients treated with intensity-modulated radiation therapy, a post hoc analysis from a phase Ⅲ randomized trial[J]. J Radiat Res, 2018, 59(4):446-455. DOI:10.1093/jrr/rry036. [7] Patil VM, Noronha V, Joshi A, et al. Influence of hypothyroidism after chemoradiation on outcomes in head and neck cancer[J]. Clin Oncol (R Coll Radiol), 2018, 30(10):675. DOI:10.1016/j.clon.2018.07.002. [8] Murthy V, Narang K, Ghosh-Laskar S, et al. Hypothyroidism after 3-dimensional conformal radiotherapy and intensity-modulated radiotherapy for head and neck cancers:prospective data from 2 randomized controlled trials[J]. Head Neck, 2014, 36(11):1573-1580. DOI:10.1002/hed.23482. [9] Chaker L, Bianco AC, Jonklaas J, et al. Hypothyroidism[J]. Lancet, 2017, 390(10101):1550-1562. DOI:10.1016/S0140-6736(17)30703-1. [10] Rodondi N, den Elzen WP, Bauer DC, et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality[J]. JAMA, 2010, 304(12):1365-1374. DOI:10.1001/jama. 2010.1361. [11] Fan CY, Lin CS, Chao HL, et al. Risk of hypothyroidism among patients with nasopharyngeal carcinoma treated with radiation therapy:a population-based cohort study[J]. Radiother Oncol, 2017, 123(3):394-400. DOI:10.1016/j.radonc.2017.04.025. [12] Wu YH, Wang HM, Chen HH, et al. Hypothyroidism after radiotherapy for nasopharyngeal cancer patients[J]. Int J Radiat Oncol Biol Phys, 2010, 76(4):1133-1139. DOI:10.1016/j.ijrobp. 2009.03.011. [13] Huang S, Wang X, Hu C, et al. Hypothalamic-pituitary-thyroid dysfunction induced by intensity-modulated radiotherapy (IMRT) for adult patients with nasopharyngeal carcinoma[J]. Med Oncol, 2013, 30(4):710. DOI:10.1007/s12032-013-0710-9. [14] Sommat K, Ong WS, Hussain A, et al. Thyroid V40 predicts primary hypothyroidism after intensity modulated radiation therapy for nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys, 2017, 98(3):574-580. DOI:10.1016/j.ijrobp.2017.03.007. [15] Ling S, Bhatt AD, Brown NV, et al. Correlative study of dose to thyroid and incidence of subsequent dysfunction after head and neck radiation[J]. Head Neck, 2017, 39(3):548-554. DOI:10.1002/hed. 24643. [16] Zhai RP, Kong FF, Du CR, et al. Radiation-induced hypothyroidism after IMRT for nasopharyngeal carcinoma:clinical and dosimetric predictors in a prospective cohort study[J]. Oral Oncol, 2017, 68:44-49. DOI:10.1016/j.oraloncology.2017.03.005. [17] Alterio D, Jereczek-Fossa BA, Franchi B, et al. Thyroid disorders in patients treated with radiotherapy for head-and-neck cancer:a retrospective analysis of seventy-three patients[J]. Int J Radiat Oncol Biol Phys, 2007, 67(1):144-150. DOI:10.1016/j.ijrobp.2006.08.051. [18] Luo R, Wu V, He B, et al. Development of a normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism in nasopharyngeal carcinoma patients[J]. BMC Cancer, 2018, 18(1):575. DOI:10.1186/s12885-018-4348-z. [19] Bhandare N, Kennedy L, Malyapa RS, et al. Primary and central hypothyroidism after radiotherapy for head-and-neck tumors[J]. Int J Radiat Oncol Biol Phys, 2007, 68(4):1131-1139. DOI:10.1016/j.ijrobp.2007.01.029. [20] Vogelius IR, Bentzen SM, Maraldo MV, et al. Risk factors for radiation-induced hypothyroidism:a literature-based meta-analysis[J]. Cancer, 2011, 117(23):5250-5260. DOI:10.1002/cncr.26186. [21] Boomsma MJ, Bijl HP, Christianen ME, et al. A prospective cohort study on radiation-induced hypothyroidism:development of an NTCP model[J]. Int J Radiat Oncol Biol Phys, 2012, 84(3):e351-e356. DOI:10.1016/j.ijrobp.2012.05.020. [22] Lin Z, Wang X, Xie W, et al. Evaluation of clinical hypothyroidism risk due to irradiation of thyroid and pituitary glands in radiotherapy of nasopharyngeal cancer patients[J]. J Med Imaging Radiat Oncol, 2013, 57(6):713-718. DOI:10.1111/1754-9485.12074.