Research progress on radiotherapy-induced hippocampal damage and cognitive dysfunction in nasopharyngeal carcinoma
Zhou Ling1, Tao Changjuan2, Chen Ming2, Yu Zhonghua3, Chen Yuanyuan2
1The First Clinical Medicine College, Guangdong Medical University, Zhanjiang 524000, China; 2Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences/Zhejiang Cancer Hospital Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences,Hangzhou 310022, China; 3Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
Abstract:Radiation-induced cognitive dysfunction is a common complication in patients with nasopharyngeal carcinoma after undergoing radiotherapy, which has been proven to be associated with neurogenesis dysfunction, oligodendrocyte loss, vascular damage and abnormal cytokine expression. With the development of medicine, functional magnetic resonance image (fMRI) can detect the early lesions of cognitive dysfunction. Hippocampus-sparing technology and drug therapy (memantine, donepezil and bevacizumab) can mitigate radiation-induced cognitive dysfunction. In this article, the pathogenesis, neuroimaging, radiodosimetry and therapies of radiotherapy-induced cognitive dysfunction in nasopharynal carcinoma patients were reviewed.
Zhou Ling,Tao Changjuan,Chen Ming et al. Research progress on radiotherapy-induced hippocampal damage and cognitive dysfunction in nasopharyngeal carcinoma[J]. Chinese Journal of Radiation Oncology, 2020, 29(11): 1008-1011.
[1] 易俊林,高黎,黄晓东,等.416例鼻咽癌调强放疗远期生存与影响因素分析[J]. 中华放射肿瘤学杂志, 2012, 21(3):196-199. DOI:10.3760/cma.j.issn.1004-4221.2012.03.002. Yi JL, Gao L, Huang XD, et al. Long term survival and influencing factors of 416 patients with nasopharyngeal carcinoma treated with intensity modulated radiotherapy[J]. Chin J Radiat Oncol, 2012, 21(3):196-199. DOI:10.3760/cma.j.issn.1004-4221.2012.03.002. [2] Lee AW, Kwong DL, Leung SF, et al. Factors affecting risk of symptomatic temporal lobe necrosis:significance of fractional dose and treatment time[J]. Int J Radiat Oncol Biol Phys, 2002, 53(1):75-85. [3] Mao YP, Zhou GQ, Liu LZ, et al. Comparison of radiological and clinical features of temporal lobe necrosis in nasopharyngeal carcinoma patients treated with 2d radiotherapy or intensity modulated radiotherapy[J]. Br J Cancer, 2014, 110(11):2633-2639. DOI:10.1038/bjc.2014.243. [4] Ali FS, Hussain MR, Gutiérrez C, et al. Cognitive disability in adult patients with brain tumors[J]. Cancer Treat Rev, 2018, 65(1):33-40. DOI:10.1016/j.ctrv.2018.02.007. [5] McDowell LJ, Ringash J, Xu W, et al. A cross sectional study in cognitive and neurobehavioral impairment in long-term nasopharyngeal cancer survivors treated with intensity-modulated radiotherapy[J]. Radiother Oncol, 2019, 131:179-185. DOI:10.1016/j.radonc.2018.09.012. Epub 2018 Sep 29. [6] Wang X, Ying H, Zhou Z, et al. Successful treatment of radiation-induced temporal lobe necrosis with mouse nerve growth factor[J]. J Clin Onco, 2011, 29(7):e166-e168. DOI:10.1200/JCO. 2010.31.7081. [7] Peng L, Bonaguidi MA. Function and dysfunction of adult hippocampal neurogenesis in regeneration and disease[J]. Am J Pathol, 2018, 188(1):23-28. DOI:10.1016/j.ajpath.2017.09.004. [8] Mizumatsu S, Monje ml, Morhardt DR, et al. Extreme sensitivity of adult neurgenesis to low doses of X-irradiation[J]. Cancer Res, 2003, 63(14):4021-4027. [9] Kempf SJ, Casciati A, Buratovic S, et al. The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation[J]. Mol Neurodegener, 2014, 9:57. DOI:10.1186/1750-1326-9-57. [10] Pouwels PJ, Vanderver A, Bernard G, et al. Hypomyelinating leukodystrophies:translational research progress and prospects[J]. Ann Neurol, 2014, 76(1):5-19. DOI:10.1002/ana.24194. [11] Sticozzi C, Belmonte G, Meini A, et al. IL-1β induces GFAP expression in vitro and in vivoand protects neurons from traumatic injury-associated apoptosis in rat brain striatum viaNFκB/Ca2+NF-calmodulin/ERK mitogen-activated protein kinase signaling pathway[J]. Neuroscience, 2013, 252:367-383. DOI:10.1016/j.neuroscience.2013.07.061. [12] 黄旭锐, 黄海威. 放射性脑损伤炎症反应机制的研究进展[J]. 中华放射医学与防护杂志, 2018, 38(11):870-873. DOI:10.3760/cma.j.issn.0254-5098.2018.11.014. Huang XR, Huang HW. Progress in the mechanism of inflammatory response in radiation-induced brain injury[J]. Chin J Radiol Med Protect, 2018, 38(11):870-873. DOI:10.3760/cma.j.issn.0254-5098.2018.11.014. [13] Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation[J]. Nature, 2000, 407(6801):242-248. DOI:10.1038/35025215. [14] Farjam R, Pramanik PA, Aryal MP, et al. Radiation-induced hippocampal vascular injury surrogate marker predicts late neurocognitive dysfunction[J]. Int J Radiat Oncol Biol Phys, 2015, 93(4):908-915. DOI:10.1016/j.ijrobp.2015.08.014. [15] Chen H, Chong ZZ, De Toledo SM, et al. Delayed activation of human microglial cells by high dose ionizing radiation[J]. Brain Res, 2016, 1646:193-198. DOI:10.1016/j.brainres.2016.06.002. [16] Rastogi S, Rizwani W, Joshi B, et al. TNF-α response of vascular endothelial and vascular smooth muscle cells involve differential utilization of ASK1 kinaseand p73r[J]. Cell Death Differ, 2012, 19(2):274-283. DOI:10.1038/cdd.2011.93. [17] Belarbi K, Jopson T, Arellano C, et al. CCR2 deficiency prevents neuronal dysfunction and cognitive impairments induced by cranial irradiation[J]. Cancer Res, 2013, 73(3):1201-1210. DOI:10.1158/0008-5472. CAN-12-2989. [18] Andrews RN, Metheny-Barlow LJ, Peiffer AM, et al. Cerebrovascular remodeling and neuroinflammation is a late effect of radiation-induced brain injury in non-human primates[J]. Radiat Res, 2017, 187(5):599-611. DOI:10.1667/RR14616.1. [19] Chapman CH, Zhu T, Nazem-Zadeh M, et al. Diffusion tensor imaging predicts cognitive function change following partial brain radiotherapy for low-grade and benign tumors[J]. Radiother Oncol, 2016, 120(2):234-240. DOI:10.1016/j.radonc.2016.06.021. [20] Chapman CH, Nagesh V, Sundgren PC, et al. Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline[J]. Int J Radiat Oncol Biol Phys, 2012, 82(5):2033-2040. DOI:10.1016/j.ijrobp.2011.01.068. [21] 李俊晨. 鼻咽癌放疗后早期放射性脑损伤的功能磁共振研究[D]. 苏州:苏州大学, 2018. Li JC. Functional magnetic resonance imaging study of early radiation-induced brain injury after radiotherapy for nasopharyngeal carcinoma[D]. Suzhou:Soochow University, 2018 [22] Pospisil P, Kazda T, Hynkova L, et al. Post-WBRT cognitive impairment and hippocampal neuronal depletion measured by in vivo metabolic MR spectroscopy:Results of prospective investigational study[J]. Radiother Oncol, 2017, 122(3):373-379. DOI:10.1016/j.radonc. 2016.12.013. [23] Su SF, Huang Y, Xiao WW, et al. Clinical and dosimetric characteristics of temporal lobe injury following intensity modulated radiotherapy of nasopharyngeal carcinoma[J]. Radiother Oncol, 2012, 104(3):312-316. DOI:10.1016/j.radonc.2012.06.012. [24] Hladik D, Tapio S. Effects of ionizing radiation on the mammalian brain[J]. Mutat Res, 2016, 770(Pt B):219-230. DOI:10.1016/j.mrrev.2016.08.003. [25] Sun ZW, Shi L, Li QL, et al. Results of the radiation dose of head, body and tail of hippocampus in nasopharyngeal carcinoma patients treated with intensity modulated radiotherapy[J]. Sci Rep, 2018, 8(1):5595. DOI:10.1038/s41598-018-23127-6. [26] Gondi V, Pugh SL, Tome WA, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metasta-ses (RTOG 0933):a phase Ⅱ multi-institutional trial[J]. J Clin Oncol, 2014, 32(34):3810-3816. DOI:10.1200/JCO.2014.57.2909. [27] Han G, Liu D, Gan H, et al. Evaluation of the dosimetric feasibility of hippocampal sparing intensity-modulated radiotherapy in patients with locally advanced nasopharyngeal carcinoma[J]. PLoS One, 2014, 9(2):e90007. DOI:10.1371/journal.pone.0090007. [28] 孙宗文,石磊,孔月,等. T3、T4期鼻咽癌IMRT中海马受量相关性分析[J]. 中华放射肿瘤学杂志, 2018, 27(3):240-244. DOI:10.3760/cma.j.issn.1004-4221.2018.03.003. Sun ZW, Shi L, Kong Y, et al. Correlation analysis of hippocampal dose in IMRT of T3 and T4 nasopharyngeal carcinoma[J]. Chin J Radiat Oncol, 2018, 27(3):240-244. DOI:10.3760/cma.j.issn.1004-4221.2018.03.003. [29] Brown PD, Pugh S, Laack NN, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy:a randomized, double-blind, placebo-controlled trial[J]. Neuro Oncol, 2013, 15(10):1429-1437. DOI:10.1093/neuonc/not114. [30] Jia J, Wei C, Jia L, et al. Efficacy and safety of donepezil in chinese patients with severe alzheimer′s disease:a randomized controlled trial[J]. J Alzheimers Dis, 2017, 56(4):1495-1504. DOI:10.3233/JAD-161117. [31] Rapp SR, Case LD, Peiffer A, et al. Donepezil for irradiated brain tumor survivors:aphase Ⅲ randomized placebo-controlled clinical trial[J]. J Clin Oncol, 2015, 33(15):1653-1659. DOI:10.1200/JCO.2014.58.4508. [32] Levin VA, Bidaut L, Hou P, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system[J]. Int J Radiat Oncol Biol Phys, 2011, 79(5):1487-1495. DOI:10.1016/j.ijro bp.2009.12.061. [33] Jiang X, Engelbach JA, Yuan L, et al. Anti-VEGF antibodies mitigate the development of radiation necrosis in mouse brain[J]. Clin Cancer Res, 2014, 20(10):2695-2702. DOI:10.1158/1078-0432. CCR-13-1941. [34] Li Y, Huang X, Jiang J, et al. Clinical variables for prediction of the therapeutic effects of bevacizumab monotherapy in nasopharyngeal carcinoma patients with radiation-induced brain necrosis[J]. Int J Radiat Oncol Biol Phys, 2018, 100(3):621-629. DOI:10.1016/j.ijrobp.2017.11.023. [35] Wang XS, Ying HM, He XY, et al. Treatment of cerebral radiation necrosis with nerve growth factor:a prospective, randomized, controlled phase Ⅱ study[J]. Radiother Oncol, 2016, 120(1):69-75. DOI:10.1016/j.radonc.2016.04.027. Epub 2016 May12. [36] Greene-Schloesser D, Moore E, Robbins ME. Molecular pathways:radiation-induced cognitive impairment[J]. Clin Cancer Res, 2013, 19(9):2294-2300. DOI:10.1158/1078-0432. CCR-11-2903. [37] Yousuf S, Brat DJ, Shu HK, et al. Progesterone improves neurocognitive outcomes following therapeutic cranial irradiation in mice[J]. Horm Behav, 2017, 96:21-30. DOI:10.1016/j.yhbeh.2017.08.004. [38] Allen BD, Acharya MM, Lu C, et al. Remediation of radiation-induced cognitive dysfunction through oral aDministration of the neuroprotective compound NSI-189[J]. Radiat Res, 2018, 189(4):345-353. DOI:10.1667/RR14879.1. [39] Fan XW, Liu HH, Wang HB, et al. Electroacupuncture improves cognitive function and hippocampal neurogenesis after brain irradiation[J]. Radiat Res, 2017, 187(6):672-681. DOI:10.1667/RR14561.1. [40] Ji JF, Ji SJ, Sun R, et al. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway[J]. Biochem Biophys Res Commun, 2014, 10, 443(2):646-651. DOI:10.1016/j.bbrc.2013.12.031.