情报科学 ›› 2025, Vol. 43 ›› Issue (5): 105-116.

• 理论研究 • 上一篇    下一篇

融合BERTopic和LSTM的LIS学科AI研究主题演变 分析及趋势预测

  

  • 出版日期:2025-05-05 发布日期:2025-09-01

  • Online:2025-05-05 Published:2025-09-01

摘要: 【目的/意义】本文旨在梳理人工智能(AI)在图书情报学(LIS)中的研究进展及未来趋势,为LIS学科的研究 方向规划、资源配置及科研政策制定提供重要参考。【方法/过程】基于BERTopic模型识别研究主题,采用主题强度 和主题词共现网络追踪主题及知识结构演变,并利用长短期记忆网络(LSTM)预测主题发展趋势,全面展现LIS学 科中 AI研究的动态和未来趋势。【结果/结论】主题演化分析表明,临床数据分析与健康信息模型、信息检索、社交 媒体情感分析和AI决策是LIS学科AI研究的持续核心主题。主题词共现网络演变揭示了,研究重心逐渐从传统的 数据驱动向大语言模型的广泛应用转移,未来研究将更加聚焦于大语言模型的构建、解释及应用。LSTM模型预测 显示,信息检索、引文分析、AI治理和人机交互与信任四个主题将在未来几年呈现显著的增长趋势。此外,AI与图 书馆服务、AI算法公正与偏见以及数据隐私与安全等主题也展现出成为潜在热门主题的增长潜力。【创新/局限】本 研究首次在LIS学科中结合BERTopic和LSTM模型,进行更具前瞻性和应用价值的主题演化分析与趋势预测。研 究的局限在于模型预测依赖单一数据维度,未来研究需引入多维特征,以提高预测的准确性和科学性。

Abstract: 【Purpose/significance】This paper aims to review the research progress and future trends of AI in LIS, providing valuable insights for planning research directions, resource allocation, and the formulation of research policies in LIS.【Method/process】Based on the BERTopic model, this study identifies research topics and tracks their evolution, as well as the transformation of knowledge structures, through topic strength and co-occurrence network analysis. Furthermore, Long Short-Term Memory (LSTM) model is em‑ ployed to predict future trends of topics, offering a comprehensive overview of the dynamics and future directions of AI research in LIS. 【Result/conclusion】Topic evolution analysis reveals that clinical data analysis and health information modeling, information retrieval, social media sentiment analysis, and AI decision-making are the enduring core topics within AI research in LIS. The evolution of the keyword co-occurrence network reveals that the research focus is gradually shifting from traditional data-driven approaches to the broad application of large language models. Future research will increasingly focus on the construction, interpretation, and application of these models. LSTM model predictions show that the four topics—information retrieval, citation analysis, AI governance, and hu‑ man- computer interaction and trust—are expected to experience significant growth in the coming years. Additionally, topics such as AI in library services, algorithm fairness and bias, and data privacy and security also show potential for becoming emerging hot topics. 【Innovation/limitation】This study is the first to integrate BERTopic and LSTM models in LIS, conducting a more forward-looking and practically valuable analysis of topic evolution and trend prediction. The limitation of this study lies in the reliance on a single data di‑ mension for predictions; future research should incorporate multidimensional features to enhance the accuracy and scientific validity of the predictions.