情报科学 ›› 2025, Vol. 43 ›› Issue (8): 179-190.

• 综述 • 上一篇    下一篇

面向网络空间认知安全的舆情干预辩论技术研究进展

  

  • 出版日期:2025-08-05 发布日期:2025-12-12

  • Online:2025-08-05 Published:2025-12-12

摘要: 【目的/意义】AI社交机器人已具备操纵舆论的能力,利用AI辩论技术干预网络舆情,有助于削弱不良内容 对公众认知的干扰,提升我国网络空间的认知安全水平。本文旨在综述该领域研究现状,夯实舆情治理技术的理 论与方法基础。【方法/过程】采用系统性综述方法,从辩论干预技术的概念框架、理论支撑、技术路径、数据建设与 评估机制四个方面,全面梳理并评析国内外研究进展,提炼出舆情干预的整体技术体系与核心难点。【结果/结论】 ①当前研究聚焦文本字面表达,跨文化语境下对语音、字形、修辞等不可译形式关注不足;②对网络情绪与公众认 知的动态交互机制研究匮乏,静态分析难以反映实时演化特征;③辩论挖掘与生成方法过度依赖概率模型,缺乏复 杂结构生成与统一评估标准,易被对手预测;④现有语料库规模有限,多依赖特定场景,缺乏通用性与大规模中文、 非正式语境的辩论数据支撑。【创新/局限】本文系统评述了舆情干预辩论技术的研究进展,未来可进一步深入探讨 AI自主辩论中的知识因果建模、语言理解中的知识不完备性及风格与语义建模中的不变性等关键问题。

Abstract: 【Purpose/significance】This study explores AI-driven debate techniques for public opinion intervention, aiming to mitigate the cognitive risks posed by harmful online content and enhance cognitive security in China—a topic currently underexplored. 【Method/process】Using a comprehensive literature review, the paper examines domestic and international research progress from four perspectives: conceptual framework, theoretical foundations, technical bases, and key challenges in debate-based public opinion inter⁃ vention.【Result/conclusion】Existing research emphasizes textual semantic analysis but overlooks non-translatable modalities such as speech, scripts, and rhetorical language, particularly in cross-cultural contexts. Studies on the interplay between online emotions and user cognition are limited, and static data analysis fails to capture dynamic shifts. Debate mining methods rely heavily on probabi⁃ listic models, lacking structural analysis capabilities and unified evaluation standards. Debate generation research remains insufficient in addressing topic complexity and unpredictability, and reinforcement learning is underutilized. Current corpora are scenariospecific, lacking generality, scale, and robust Chinese debate data, with issues such as concept drift. These gaps outline critical direc⁃ tions for future work.【Innovation/limitation】This study provides a systematic review of public opinion intervention via debate tech⁃ nologies and identifies key areas for future exploration, including causal reasoning in autonomous AI debate, knowledge incomplete⁃ ness in deep language understanding, and challenges in style and semantic invariance in natural language modeling.