情报科学 ›› 2025, Vol. 43 ›› Issue (4): 139-147.

• 业务研究 • 上一篇    下一篇

知识进化视角下跨学科合作研究机会发现

  

  • 出版日期:2025-04-05 发布日期:2025-08-28

  • Online:2025-04-05 Published:2025-08-28

摘要: 【目的/意义】当今社会信息爆炸增长,如何从多源技术数据中提取有效信息,进而发现有价值的学科领域 间的研究机会组合关系,是产生突破性研究进展、提高学术研究效率的关键。【方法/过程】结合进化理论视角建立 多学科知识间的关系分析架构,利用触发词和SAO结构分析抽取各学科涉及的技术及其影响形成知识基因,构建 各学科知识基因数据库,并融合社交评论的情感分析结果,利用异构图模型构建各元素间关系网络。最后,利用需 求因素分析结果对备选结合知识基因进行自然筛选,得到最终领域交叉下的进化知识基因,实现跨学科合作研究 机会发现。【结果/结论】在知识进化视角下,不同学科中技术、影响与社会需求被抽象为不同个体基因与自然选择 的关系。研究结果显示,知识进化视角的引入可有效提高多学科合作研究机会发现效率。【创新/局限】知识进化思 想的引入实现了对不同学科间技术点、影响和实际需求间多维关系的精确诠释,为科研指导、知识服务提供可靠参 考。然而,本方法在知识基因图谱绘制、定量评估方法等方面具有局限性。

Abstract: 【Purpose/significance】With the explosive growth of information in today's society, the key to achieving breakthrough re⁃ search progress and improving the efficiency of academic research lies in how to extract valuable information from diverse technologi⁃ cal data sources. Furthermore, it involves the discovery of inter-disciplinary research opportunities and the combination of relation⁃ ships within valuable academic domains.【Method/process】Establishing a relational analysis framework among various disciplines, in⁃ corporating the perspective of evolutionary theory, involves extracting technologies and their impacts across disciplines through trigger words and SAO structure analysis to form knowledge genes. Constructing databases for knowledge genes in each discipline, integrating sentiment analysis results from social comments, and utilizing a heterogeneous graph model to build a network of relationships among elements. Finally, employing the results of demand factor analysis to naturally filter alternative knowledge genes, obtaining evolved knowledge genes in the context of interdisciplinary intersections, thus realizing the discovery of opportunities for cross-disciplinary collaborative research.【Result/conclusion】In the perspective of knowledge evolution, technologies, impacts, and societal demands across different disciplines are abstracted as individual genes with relationships to natural selection. The research findings indicate that the introduction of the knowledge evolution perspective can effectively enhance the efficiency of discovering opportunities for in⁃ terdisciplinary collaborative research.【Innovation/limitation】The introduction of the concept of knowledge evolution has achieved a precise interpretation of the multidimensional relationships among technological points, impacts, and practical demands across differ⁃ ent disciplines. This provides a reliable reference for research guidance and knowledge services. However, this method has limitations in aspects such as mapping knowledge gene networks and quantitative assessment methods.