摘要: 【目的/意义】知识搜索是发明过程的核心环节,降低发明过程中的知识搜索成本对提高创新绩效具有重要 意义。然而,目前有关知识和信息搜索的研究缺乏针对复杂发明过程中知识搜索规则和搜索成本的定量模型,是 亟需填补的研究空白。【方法/过程】本研究在为发明问题构建知识网络的基础上,对常用启发式知识搜索规则与搜 索成本进行建模,旨在探索知识搜索成本较低的搜索规则,并用Q学习算法估计理想化的知识搜索成本。【结果/结 论】通过使用光刻技术领域的专利数据对提出的知识搜索模型进行仿真,结果表明:优先搜索更熟悉或更常用的领 域知识通常会有效地降低搜索成本,但所有搜索规则得到的知识搜索成本距离理想搜索成本仍存在巨大的差距。 【创新/局限】研究首次提出了一个用于求解具体发明问题的定量知识搜索模型,能为技术攻关中的知识搜索决策 推荐具体的知识元素。主要局限是假定构建的先前知识网络中包含所有解知识元素,这一条件须在未来研究中加 以放宽。
