情报科学 ›› 2025, Vol. 43 ›› Issue (4): 117-128.

• 业务研究 • 上一篇    下一篇

基于事件驱动的抗战知识图谱构建与应用研究

  

  • 出版日期:2025-04-05 发布日期:2025-08-28

  • Online:2025-04-05 Published:2025-08-28

摘要: 【目的/意义】为推动抗日战争历史资源的高效整理与传承,促进抗战历史的学术研究,提升公众对抗战的 认知,提出了一种基于事件驱动的抗战知识图谱构建方法。【方法/过程】研究首先从抗战历史资源中收集并整理了 1022 个抗战事件,基于事件驱动视角,识别了事件之间的时序关系、因果关系与包含关系,构建了相应的三元组。 随后,结合大语言模型进行实体抽取与关系识别。最终将构建的知识图谱导入Neo4j数据库,进行可视化展示和存 储,以支持智能问答、历史分析等应用功能。【结果/结论】研究表明,基于事件驱动的抗战知识图谱能够系统化组织 抗战历史资源,突破传统历史叙事的局限,为学术研究提供多维度分析工具,并为公众提供互动式历史学习体验, 能够促进抗战精神的传承和发扬。【创新/局限】提出了一种基于事件驱动的抗战知识图谱构建方法,并结合大语言 模型进行实体关系抽取,推动了历史文化资源的系统化整理与深度挖掘。

Abstract: 【Purpose/significance】To promote the efficient organization and inheritance of historical resources related to the AntiJapanese War, enhance academic research on the war, and improve public awareness of the war, this paper proposes an event-driven method for constructing a knowledge graph of the Anti-Japanese War.【Method/process】This study first collected and organized 1, 022 Anti-Japanese War events from historical resources. Based on an event-driven perspective, the study identified the temporal, causal, and containment relationships between events, constructing the corresponding triples. Then, entity extraction and relation rec⁃ ognition were conducted using large language models. Finally, the constructed knowledge graph was imported into the Neo4j database for visualization and storage to support applications such as intelligent question answering and historical analysis.【Result/conclusion】 The research indicates that the event-driven knowledge graph of the Anti-Japanese War can systematically organize historical re⁃ sources, breaking the limitations of traditional historical narration. It provides multi-dimensional analysis tools for academic research and offers an interactive historical learning experience for the public, contributing to the inheritance and promotion of the AntiJapanese War spirit.【Innovation/limitation】This study proposes an event-driven method for constructing a knowledge graph of the Anti-Japanese War and combines large language models for entity and relation extraction, facilitating the systematic organization and deep exploration of historical and cultural resources.