情报科学 ›› 2025, Vol. 43 ›› Issue (3): 47-57.

• 理论研究 • 上一篇    下一篇

基于对抗训练和全局指针网络的医疗文本 实体关系联合抽取模型

  

  • 出版日期:2025-03-05 发布日期:2025-05-27

  • Online:2025-03-05 Published:2025-05-27

摘要: 【目的/意义】在比较分析现有关系抽取方法的基础上,构建适用于医疗文本的关系抽取模型。【方法/过程】 构建AGP模型实现关系抽取。该模型将医疗文本的嵌入表示输入Transformer编码器进一步提取文本特征,利用全 局指针网络解码。为了提高鲁棒性,模型引入了对抗训练。【结果/结论】AGP 模型在 CMeIE-V1、CMeIE-V2 和 DiaKG数据集上F1值分别达到0.6190、0.5321和0.5684。实验结果证明AGP模型在医疗文本关系抽取任务上的性 能优于基准模型。【创新/局限】本文提出的模型未整合大语言模型。

Abstract: 【Purpose/significance】Based on the comparative analysis of existing relation extraction methods, we construct a relation ex⁃ traction model suitable for medical texts.【Method/process】We construct an AGP model to implement relation extraction. This model takes the embedding representation of medical text as input, which is then processed through a transformer encoder for further extrac⁃ tion. A global pointer network is utilized for decoding. To enhance robustness, adversarial training is integrated into the model【. Result/ conclusion】The AGP model achieves F1 scores of 0.6190, 0.5321, and 0.5684 on the CMeIE-V1, CMeIE-V2, and DiaKG datasets, respectively. The experiment results demonstrate that the AGP model outperforms baseline models on medical text relation extraction tasks【. Innovation/limitation】The model proposed in this paper does not integrate large language models.