情报科学 ›› 2024, Vol. 42 ›› Issue (11): 22-30.

• 理论研究 • 上一篇    下一篇

数据驱动下网络辟谣信息画像与治理模式研究 ——基于引爆点理论

  

  • 出版日期:2024-11-01 发布日期:2025-04-08

  • Online:2024-11-01 Published:2025-04-08

摘要: 【目的/意义】针对网络辟谣信息传播离散化、内容模糊化、治理复杂化的现实问题,搭建了“数据层→画像 层→模式层”的网络辟谣信息画像与治理的理论框架,以期为网络辟谣信息治理实践提供理论指导。【方法/过程】 以引爆点理论为基础,从个别人物法则、附着力因素法则、环境威力法则三大法则入手,对网络辟谣信息的用户画 像、内容画像和环境画像进行剖析,探究不同因素组合对网络辟谣信息治理机制的影响。【结果/结论】研究发现:公 众对网络辟谣信息主题挖掘较深,且积极情绪占据主导地位;单个因素不构成网络辟谣信息爆发的必要条件,引爆 网络辟谣信息的因果路径是多重并发的;归纳出了用户助推模式、内容导向模式和环境驱动模式三种网络辟谣信 息治理模式。【创新/局限】搭建了网络辟谣信息画像与治理的理论框架,实现由离散化数据到概念化模式的研究思 路。局限性在于未对网络辟谣事件的类型进行细分,未考虑时间因素对网络辟谣信息治理效果的影响。

Abstract: 【Purpose/significance】Aiming at the practical problems of discretization, fuzziness and complexity of network rumor refuta⁃ tion information dissemination. This article establishes a theoretical framework for network anti rumor information profiling and gover⁃ nance, which includes "data layer - portrait layer - pattern layer". It aims to provide theoretical guidance for the practice of network rumor refutation and information governance【. Method/process】Based on the tipping point theory, this article analyzes the user profile, content profile, and environmental profile of online rumor refutation information, starting from three major principles: individual char⁃ acter rule, adhesion factor rule, and environmental power rule. It explores the impact of different combinations of factors on the gover⁃ nance mechanism of online anti rumor information【. Result/conclusion】This study found that the public has a deep understanding of the theme of online anti rumor information, and positive emotions dominate. A single factor does not constitute a necessary condition for the outbreak of online rumor refutation information. The causal path that triggers online rumor refutation information is multiple and concurrent. This article summarizes three types of network anti rumor information governance models: user assistance model, con⁃ tent oriented model, and environment driven model.【Innovation/limitation】This article establishes a theoretical framework for the por⁃ trayal and governance of online anti rumor information. It implements a research approach from discretizing data to conceptualizing patterns. The limitation of this article is that it does not subdivide the types of online rumor refutation events and does not consider the impact of time factors on the effectiveness of online rumor refutation information governance.