情报科学 ›› 2024, Vol. 42 ›› Issue (11): 158-166.

• 业务研究 • 上一篇    下一篇

人智信任对交互策略类知识贡献行为的影响研究 ——基于生成式AI社区

  

  • 出版日期:2024-11-01 发布日期:2025-04-08

  • Online:2024-11-01 Published:2025-04-08

摘要: 【目的/意义】生成式AI的科技浪潮影响了在线社区的知识贡献行为,即涌现了以提示词为主的交互策略 类知识。越来越多的生成式AI平台也开始搭建知识共享社区,以期提升用户的交互体验。【方法/过程】基于信任视 角,本文从对生成式 AI的技术信任和对生成式 AI平台的制度信任两个方面构建交互策略类知识贡献行为的研究 模型。【结果/结论】用户的知识贡献意愿显著正向影响知识贡献行为。在对生成式AI的技术信任方面,类人信任和 功能信任均会对知识贡献意愿产生显著的正向影响,其中类人信任的作用效果大于功能信任的作用效果。在生成 式AI平台的制度信任方面,感知平台制度机制有效性显著促进类人信任对知识贡献意愿的影响,但显著抑制功能 信任对知识贡献意愿的影响。【创新/局限】本文丰富了交互策略类知识贡献行为的理论基础,为生成式AI平台的管 理提供了理论工具和实践参照。

Abstract: 【Purpose/significance】The technological wave of generative AI has influenced the knowledge contribution behavior of on⁃ line communities, the emergence of cue-word-based interaction strategy-based knowledge. More and more generative AI platforms have also begun to build knowledge sharing communities in order to enhance the user interaction experience.【Method/process】Based on the trust perspective, this paper constructs a research model of the knowledge contribution behavior of the interaction strategy class from the aspects of technical trust to generative AI and institutional trust to generative AI platforms.【Result/conclusion】Users′ knowl⁃ edge contribution willingness significantly and positively influences knowledge contribution behavior. In terms of technical trust in generative AI, both human-like trust and functional trust significantly and positively affect knowledge contribution willingness, with human-like trust having a greater effect than functional trust. In terms of institutional trust in generative AI platforms, the perceived ef⁃ fectiveness of platform institutional mechanisms significantly contributes to the effect of human-like trust on knowledge contribution willingness, but significantly inhibits the effect of functional trust on knowledge contribution willingness.【Innovation/limitation】This paper enriches the theoretical foundation of interaction strategy-like knowledge contribution behavior and provides theoretical tools and practical references for the management of generative AI platforms.