情报科学 ›› 2024, Vol. 42 ›› Issue (10): 171-180.

• 业务研究 • 上一篇    下一篇

基于Graph Kernel与LDA的跨学科知识融合倾向差异识别

  

  • 出版日期:2024-10-01 发布日期:2025-03-27

  • Online:2024-10-01 Published:2025-03-27

摘要: 【 目的/意义】探索跨学科知识融合的模式与特征,对于推进学科发展与复杂问题研究具有重要意义。【方 法/过程】文章构建不同国家的学科交叉网络,提出一种结合Graph Kernel与LDA主题模型的知识融合差异识别方 法,对学科交叉网络属性特征、学科交叉网络相似性和学科主题差异性展开分析。【结果/结论】研究结果表明,该方 法能够有效识别不同国家在跨学科知识融合中的特征与差异。不同国家在学科交叉偏好上既有相似之处也存在 差异;各国在同一交叉方向的知识融合倾向也存在差异性。【创新/局限】研究中提出的方法与相关结论有助于推进 学科交叉研究,限于篇幅原因仅分析领域中主要的学科交叉方向。

Abstract: 【Purpose/significance】Exploring the patterns and characteristics of interdisciplinary knowledge integration is of great sig⁃ nificance for promoting disciplinary development and complex problem research. 【Method/process】This article constructs interdisci⁃ plinary networks in different countries and proposes a knowledge integration difference recognition method that combines Graph Ker⁃ nel and LDA topic models. The article analyzes the attribute features, similarity, and differences of interdisciplinary networks.【 Result/ conclusion】The results indicate that this method can effectively identify the characteristics and differences of different countries in in⁃ terdisciplinary knowledge integration. There are both similarities and differences in interdisciplinary preferences among different coun⁃ tries; There are also differences in the tendency of knowledge fusion in the same interdisciplinary direction among countries【. Innova⁃ tion/limitation】The methods and related conclusions proposed in the study are helpful in promoting interdisciplinary research, but due to space limitations, only the main interdisciplinary directions in the field were analyzed.