Department of Radiation Oncology,Sun Yat-sen University Cancer Center,State Key Laboratory of Oncology in South China,Guangzhou 510060,China (Zhu JH,Wang B,Liang J,Chen LX);School of Physics,Sun Yat-sen University (Liu XW),Guangzhou 510275,China
Abstract Objective To realize independent 3D dose calculation for intensity-modulated radiotherapy (IMRT) by building a two-source beam model of medical linear accelerator combined with a collapsed-cone convolution/superposition (CCCS) algorithm. Methods Two-source beam models of medical linear accelerators (Varian and Elekta) were built to calculate the 3D dose distributions using the CCCS algorithm. Scp,percent depth dose,and off-axis dose distribution were compared with the scanning data of ion chamber to confirm the calculation model. Twelve intensity-modulated treatment plans from each accelerator (a total of 24 plans) were selected for comparison. The calculation results of treatment planning system (TPS) were independently validated,and further compared with the measurement results of detector matrix. Results The dose deviations at the center of rectangle fields were lower than 1%,the deviation between doses at the same position in the field was not higher than 1%,and the positional deviation in the penumbra region was not higher than 1 mm. Gamma analysis based on 3%/3 mm standard was used tocompare the results calculated by detectors and TPS.The pass rates were higher than 90%. Conclusions The independent 3D dose calculation for IMRT based on two-source beam model combined with CCCS algorithm has been successfully set up. The comparison between regular field and IMRT plan indicates that this method and calculation model can be used for independent 3D dose calculation of clinical plan.
Zhu Jinhan,Wang Bin,Liang Jian et al. Independent 3D dose calculation for IMRT based on simplification of beam model and collapsed-cone convolution/superposition algorithm[J]. Chinese Journal of Radiation Oncology, 2017, 26(7): 795-799.
Zhu Jinhan,Wang Bin,Liang Jian et al. Independent 3D dose calculation for IMRT based on simplification of beam model and collapsed-cone convolution/superposition algorithm[J]. Chinese Journal of Radiation Oncology, 2017, 26(7): 795-799.
[1] Fraass B,Doppke K,Hunt M,et al. American association of physicists in medicine radiation therapy committee task group 53:quality assurance for clinical radiotherapy treatment planning[J].Med Phys,1998,25(10):1773-1829.DOI:10.1118/1.598373. [2] Ortiz López P,Cosset JM,Dunscombe P,et al. ICRP publication 112.A report of preventing accidental exposures from new external beam radiation therapy technologies[J].Ann ICRP,2009,39(4):1-86.DOI:10.1016/j.icrp.2010.02.002. [3] Tillikainen L,Siljam ki S,Helminen H,et al. Determination of parameters for a multiple-source model of megavoltage photon beams using optimization methods[J].Phys Med Biol,2007,52(5):1441-1467.DOI:10.1088/0031-9155/52/5/015. [4] Krieger T,Sauer OA.Monte Carlo-versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom[J].Phys Med Biol,2005,50(5):859-868.DOI:10.1088/0031-9155/50/5/010. [5] Sterpin E,Salvat F,Olivera G,et al. Monte Carlo evaluation of the convolution/superposition algorithm of Hi-ArtTMtomotherapy in heterogeneous phantoms and clinical cases[J].Med Phys,2009,36(5):1566-1575.DOI:10.1118/1.3112364. [6] Zhu JH,Chen LX,Chen AL,et al. Fast 3D dosimetric verifications based on an electronic portal imaging device using a GPU calculation engine[J].RadiatOncol,2015,10(1):85.DOI:10.1186/s13014-015-0387-7. [7] 曹午飞,陈立新,陈利,等.独立验算软件调强放疗质量控制可行性研究[J].中华放射肿瘤学杂志,2011,20(6):521-524.DOI:10.3760/cma.j.issn.1004-4221.2011.06.021. Cao WF,Chen LX,Chen L,et al. The feasibility study of independent check for intensity-modulated radiotherapy[J].ChinJRadiatOncol,2011,20(6):521-524.DOI:10.3760/cma.j.issn.1004-4221.2011.06.021. [8] 唐斌,康盛伟,王先良,等.基于直线加速器虚拟源模型的蒙特卡洛剂量计算及在IMRT独立验算中的初步应用[J].中华放射肿瘤学杂志,2016,25(4):372-375.DOI:10.3760/cma.j.issn.1004-4221.2016.04.014. Tang B,Kang SW,Wang XL,et al. Monte Carlo dose calculation based on the virtual source model with linear accelerator and its preliminary application in independent dose calculation for IMRT plans[J].ChinJRadiatOncol,2016,25(4):372-375.DOI:10.3760/cma.j.issn.1004-4221.2016.04.014. [9] Liu HH,Mackie TR,McCullough EC.A dual source photon beam model used in convolution/superposition dose calculations for clinical megavoltage X-ray beams[J].Med Phys,1997,24(12):1960-1974.DOI:10.1118/1.598110. [10] Ahnesj A.Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media[J].Med Phys,1989,16(4):577-592.DOI:10.1118/1.596360. [11] Lu W G,Olivera GH,Chen ML,et al. Accurate convolution/superposition for multi-resolution dose calculation using cumulative tabulated kernels[J].Phys Med Biol,2005,50(4):655-680.DOI:10.1088/0031-9155/50/4/007. [12] Mainegra-Hing E,Rogers DWO,Kawrakow I.Calculation of photon energy deposition kernels and electron dose point kernels in water[J].Med Phys,2005,32(3):685-699.DOI:10.1118/1.1861412. [13] Jin H,Keeling VP,Johnson DA,et al. Interplay effect of angular dependence and calibration field size of MapCHECK 2 on RapidArc quality assurance[J].J ApplClin Med Phys,2014,15(3):80-92.DOI:10.1120/jacmp.v15i3.4638. [14] VARiAN Medical Systems. Eclipse algorithms reference guide[Z].2006:I:2-3-I:2-2. [15] Ding GX.Energy spectra,angular spread,fluence profiles and dose distributions of 6 and 18 MV photon beams:results of montecarlo simulations for a varian 2100EX accelerator[J].PhysMed Biol,2002,47(7):1025-1046.DOI:10.1088/0031-9155/47/7/303. [16] 韩俊杰,朱金汉,张白霖,等.医用直线加速器主要部件对X射线能谱的影响[J].核技术,2015,38(10):100202.DOI:10.11889/j.0253-3219.2015.hjs.38.100202. Han JJ,Zhu JH,Zhang BL,et al. Effects of main components of clinical linac on X-ray energy spectra[J].NuclTechniq,2015,38(10):100202.DOI:10.11889/j.0253-3219.2015.hjs.38.100202. [17] Chen Q,Chen ML,Lu WG.Ultrafast convolution/superposition using tabulated and exponential kernels on GPU[J].Med Phys,2011,38(3):1150-1161.DOI:10.1118/1.3551996. [18] ShalekRJ. Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures[J].Med Phys,1977,4(5):461.DOI:10.1118/1.594356. [19] Pardo Montero J,Fenwick JD.The effect of different control point sampling sequences on convergence of VMAT inverse planning[J].PhysMed Biol,2011,56(8):2569-2583.DOI:10.1088/0031-9155/56/8/015.