[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on application of machine learning in quality assurance of intensity-modulated radiotherapy
Li Jiaqi1,Zhang Shuming1,Wang Hao1,Zhang Xile1,Li Jun1,Shi Chengyu2,Sui Jing3,Yang Ruijie1
1Department of Radiation Oncology,Peking University Third Hospital,Beijing 100191,China; 2Memorial Sloan—Kettering Cancer Center,New York NYl0065,United States of America; 3National Laboratory of Pattern Recognition,Institute of Automation,Chinese Academy of Sciences,Beijng 100190,China
Abstract In recent years, the application of machine learning in the field of radiotherapy has been gradually increased along with the development of big data and artificial intelligence technology. Through the training of previous plans, machine learning can predict the results of plan quality and dose verification. It can also predict the multi-leaf collimator (MLC) positioning error and linear accelerator performance. In addition, machine learning can be applied in the quality assurance of intensity-modulated radiotherapy to improve the quality and efficiency of treatment plan and implementation, increase the benefits to the patients and reduce the risk. However, there are many problems, such as difficulty in the selection, extraction and calculation of characteristic value, requirement for large training sample size and insufficient prediction accuracy, which impede its clinical translation and application. In this article, research progress on the application of machine learning in the quality assurance of IMRT was reviewed.
Corresponding Authors:
Yang Ruijie,Email:ruijyang@yahoo.com
Cite this article:
Li Jiaqi,Zhang Shuming,Wang Hao et al. Research progress on application of machine learning in quality assurance of intensity-modulated radiotherapy[J]. Chinese Journal of Radiation Oncology, 2019, 28(4): 309-313.
Li Jiaqi,Zhang Shuming,Wang Hao et al. Research progress on application of machine learning in quality assurance of intensity-modulated radiotherapy[J]. Chinese Journal of Radiation Oncology, 2019, 28(4): 309-313.
[1] Torkamani A,Andersen KG,Steinhubl SR,et al. High-definition medicine[J].Cell,2017,170(5):828.DOI:10.1016/j.cell.2017.08.007. [2] Bibault JE,Giraud P,Burgun A.Big Data and machine learning in radiation oncology:State of the art and future prospects[J].Cancer Letters,2016,382(1):110.DOI:10.1016/j.canlet.2016.05.033. [3] Strassmann G,Abdellaoui S,Richter D.Atlas-based semiautomatic target volume definition (CTV) for head-and-neck tumors[J].Int J Radiat Oncol Biol Phys,2010,78(4):1270-1276.DOI:10.1016/j.ijrobp.2010.01.029. [4] Mcintosh C,Welch M,Mcniven A,et al. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method[J].Phys Med Biol,2017,62(15):5926.DOI:10.1088/1361-6560/aa71f8. [5] Oermann EK,Rubinsteyn A,Ding D,et al. Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malformations[J].Sci Rep,2016,6:21161.DOI:10.1038/srep21161. [6] Valdes G,Solberg TD,Heskel M,et al. Using machine learning to predict radiation pneumonitis in patients with stage Ⅰ non-small cell lung cancer treated with stereotactic body radiation tTherapy[J].Phys Med Biol,2016,61(16):6105.DOI:10.1088/0031-9155/61/16/6105. [7] McGrath SD,Matuszak MM,Yan D,et al. Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy:a dosimetric and treatment efficiency analysis[J].Radiother oncol,2010,95(2):153-157.DOI:10.1016/j.radonc.2009.12.039. [8] 杨瑞杰,张喜乐,刘路,等.2010例调强放疗患者计划剂量验证结果分析[J].中华放射医学与防护杂志,2016,36(12):917-921.DOI:10.3760/cma.j.issn.0254-5098.2016.12.008. Yang RJ,Zhang XL,Liu L,et al. Analysis of 2010 patient-specific intensity-modulated radiation therapy dosimetric verification results[J].Chin J Radiol Med Protect,2016,36(12):917-921.DOI:10.3760/cma.j.issn.0254-5098.2016.12.008. [9] Arel I,Rose DC,Karnowski TP.Deep machine learning-a new frontier in artificial intelligence research[J].Comput Intell Maga IEEE,2010,5(4):13-18.DOI:10.1109/MCI.2010.938364. [10] Zhu XF,Ge YR,Li TR,et al. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning[J].Med Phys,2011,38(2):719-26.DOI:10.1118/1.3539749. [11] Stanhope C,Wu QJ,Yuan L,et al. Utilizing knowledge from prior plans in the evaluation of quality assurance[J].Phys Med Biol,2015,60(12):4873-91.DOI:10.1088/0031-9155/60/12/4873. [12] Yuan L,Ge Y,Lee WR,et al. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans[J].Med Phys,2012,39(11):6868-78.DOI:10.1118/1.4757927. [13] Skarpman MJ,Sjlund J.Dose-volume histogram prediction using density estimation.[J].Phys Med Biol,2015,60(17):6923-36.DOI:10.1088/0031-9155/60/17/6923. [14] Azmandian F,Kaeli D,Dy JG,et al. Towards the development of an error checker for radiotherapy treatment plans:a preliminary study[J].Phys Med Biol,2007,52(21):6511-24.DOI:10.1088/0031-9155/52/21/012. [15] 黄鹏,田源,胡志辉,等.利用聚类分析方法辅助核对患者放疗计划[J].中华放射肿瘤学杂志,2016,25(11):1218-1222.DOI:10.3760/cma.j.issn.1004-4221.2016.11.016. Huang P,Tian Y,Hu ZH,et al. Clustering analysis:assistance to verification of radiotherapy treatment plans[J].Chin J Radiat Oncol,2016,25(11):1218-1222.DOI:10.3760/cma.j.issn.1004-4221.2016.11.016. [16] Valdes G,Scheuermann R,Hung CY,et al. A mathematical framework for virtual IMRT QA using machine learning[J].Med Phys,2016,43(7):4323.DOI:10.1118/1.4953835. [17] Crowe SB,Kairn T,Kenny J,et al. Treatment plan complexity metrics for predicting IMRT pre-treatment quality assurance results.[J].Aust Phys Engin Sci Med,2014,37(3):475-482.DOI:10.1007/s13246-014-0274-9. [18] Du W,Cho SH,Zhang X,et al. Quantification of beam complexity in intensity-modulated radiation therapy treatment plans[J].Med Phys,2014,41(2):021716.DOI:10.1118/1.4861821. [19] Valdes G,Chan MF,Lim S B,et al. IMRT QA using machine learning:A multi-institutional validation[J].J Appl Clin Med Phys,2017,18(5):279-284.DOI:10.1002/acm2.12161. [20] Yan G,Liu C,Simon TA,et al. On the sensitivity of patient-specific IMRT QA to MLC positioning errors[J].J Appl Clin Med Phys,2009,10(1):2915.DOI:19223841. [21] Nelms BE,Chan MF,Jarry G,et al. Evaluating IMRT and VMAT dose accuracy:practical examples of failure to detect systematic errors when applying a commonly used metric and action levels[J].Med Phys,2013,40(11):111722.DOI:10.1118/1.4826166. [22] Stasi M,Bresciani S,Miranti A,et al. Pretreatment patient-specific IMRT quality assurance:a correlation study between gamma index and patient clinical dose volume histogram[J].Med Phys,2012,39(12):7626-34.DOI:10.1118/1.4767763. [23] 程燕铭,胡彩容,阴晓娟,等.鼻咽癌IMRT和VMAT计划对机器跳数和MLC误差剂量学敏感度对比研究[J].中华放射肿瘤学杂志,2017,26(10):1199-1203.DOI:10.3760/cma.j.issn.1004-4221.2017.10.019 Cheng YM,Hu CR,Yin XJ,et al. Dosimetric sensitivity with MU and MLC errors in IMRT versus VMAT plan for nasopharyngeal carcinoma[J].Chin J Radiat Oncol,2017,26(10):1199-1203.DOI:10.3760/cma.j.issn.1004-4221.2017.10.019. [24] 王清鑫,戴建荣,张可,等.容积调强旋转放疗的计划验证通过率对多叶准直器位置误差的灵敏度[J].中华放射医学与防护杂志,2013,33(4):388-391.DOI:10.3760/cma.j.issn.0254-5098.2013.04.013 Wang QX,Dai JR,Zhang K,et al. The sensitivity of patient-specific VMAT QA to MLC positioning errors[J].Chin J Radiol Med Protect,2013,33(4):388-391.DOI:10.3760/cma.j.issn.0254-5098.2013.04.013. [25] Carlson JN,Park JM,Park SY,et al. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors[J].Phys Med Biol,2016,61(6):2514-31.DOI:10.1088/0031-9155/61/6/2514. [26] Chan MF,Li Q,Tang X,et al. Visual analysis of the daily QA results of photon and electron beams of a trilogy linac over a five-year period[J].Int J Med Phys Clin Engin Radiat Oncol,2015,4(4):290-299.DOI:10.4236/ijmpcero.2015.44035. [27] Almond PR,Biggs PJ,Coursey BM,et al. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams[J].Med Phys,1999,26(9):1847-1870.DOI:10.1118/1.598691. [28] Grattan MW,Hounsell AR.Analysis of output trends from Varian 2100C/D and 600C/D accelerators[J].Phys Med Biol,2011,56(1):N11-9.DOI:10.1088/0031-9155/56/1/N02. [29] Li Q,Chan MF.Predictive time-series modeling using artificial neural networks for Linac beam symmetry:an empirical study[J].Ann New York Acade Sci,2017,1387(1):84-94.DOI:10.1111/nyas.13215. [30] Kruskal JB,Berkowitz S,Geis JR,et al. Big data and machine learning-strategies for driving this bus:a summary of the 2016 intersociety summer conference[J].J Am Coll Radiol,2017,14(6):811-817.DOI:10.1016/j.jacr.2017.02.019. [31] Huq MS,Fraass BA,Dunscombe PB,et al. The report of Task Group 100 of the AAPM:application of risk analysis methods to radiation therapy quality management[J].Med Phys,2016,43(7):4209.DOI:10.1118/1.4947547. [32] 杨瑞杰,王俊杰,许峰,等.电子射野影像系统用于调强放疗剂量验证[J].中华放射医学与防护杂志,2013,33(1):55-57.DOI:10.3760/cma.j.issn.0254-5098.2013.01.014. Yang RJ,Wang JJ,Xu F,et al. The electronic portal imaging device for dosimetric verification of intensity-modulated radiation therapy[J].Chin J Radiol Med Protect,2013,33(1):55-57.DOI:10.3760/cma.j.issn.0254-5098.2013.01.014. [33] 杨瑞杰,张喜乐,谢耀钦,等.Axesse 加速器实施 VMAT 的主要性能测试[J].中华放射肿瘤学杂志,2016(3):260-265.DOI:10.3760/cma.j.issn.1004-4221.2016.03.014. Yang RJ,Zhang XL,Xie YX,et al. Commissioning of Axesse accelerator for volumetric modulated arc therapy[J].Chin J Radiat Oncol,2016(3):260-265.DOI:10.3760/cma.j.issn.1004-4221.2016.03.014. [34] Lambin P,Roelofs E,Reymen B,et al. Rapid Learning health care in oncology-an approach towards decision support systems enabling customised radiotherapy[J].Radiother Oncol,2013,109(1):159-164.DOI:10.1016/j.radonc.2013.07.007. [35] Potters L,Ford E,Evans S,et al. A systems approach using big data to improve safety and quality in radiation oncology[J].Int J Radiat Oncol Biol Phys,2016,95(3):885.DOI:10.1016/j.ijrobp.2015.10.024.