摘要 目的 验证CBCT图像引导系统骨性和灰度配准算法的精度和适用范围,为临床提供参考依据。方法 使用仿真人头颈和胸腹体模,模拟三维方向摆位偏移并在完成每次摆位时获取CBCT图像。用IGRT系统的骨性和灰度配准方法分别配准计划CT图像与各次摆位CBCT图像,得到体模在x、y、z方向偏移量。分析两种配准方法的精度和重复性,并行配对t检验。结果 头颈体模骨性和灰度配准在x、y、z轴向的误差分别为(-0.65±0.22) mm和(-0.70±0.17) mm (P=0.00)、(1.02±0.27) mm和(0.90±0.20) mm (P=0.00)、(1.46±0.53) mm和(1.47±0.47) mm (P=0.54);胸腹体模的分别为(0.82±0.33) mm和(0.79±0.18) mm (P=0.03)、(2.45±1.17) mm和(1.61±0.84) mm (P=0.00)、(1.44±3.25) mm和(0.19±1.11) mm (P=0.00)。结论 灰度配准精度和稳定性高于骨性配准,头颈部配准精度稍优于胸腹部,临床使用时应分别进行测试并根据治疗精度要求选择合适方法并修正误差。
Abstract:Objective To evaluate the accuracy of image registration based on bony structure (RBS) and grey-scale (RGS) in positioning correction of radiation treatment, and their reliability in clinical application. Methods Setup errors of anthropomorphic phantom (chest& abdomen, head& neck) were simulated with x-, y-, z-directions. CBCT images were acquired for each simulation and registered with planning CT. using bony structure and grey-scale registration separately. Geometry accuracy of all registration were then obtained and analyzed. Results The errors of RBS and RGS in x-,y-,z-directions were (-0.65±0.22) mm and (-0.70±0.17) mm (P=0.00),(1.02±0.27) mm and (0.90±0.20) mm (P=0.00),(1.46±0.53) mm and (1.47±0.47) mm (P=0.54) for head& neck positioning;with (0.82±0.33) mm and (0.79±0.18) mm (P=0.03),(2.45±1.17) mm and (1.61±0.84) mm (P=0.00),(1.44±3.25) mm and (0.19±1.11) mm (P=0.00) for chest& abdomen positioning. Conclusions RGS is more accurate and stable than RBS. The accuracy of image registration is a little better for head& neck than that for chest& abdomen. The algorithms of image registration used in clinical application needs to be tested independently and the systematic error needs to be corrected before applying in different treatment techniques according to their accuracy requirement.
Huang Botian,Deng Xiaowu,Luo Guangwen et al. Accuracy study of different registration methods for cone beam CT and planning CT in image-guided radiation therapy[J]. Chinese Journal of Radiation Oncology, 2014, 23(2): 156-160.
[1] Mackie TR, Kapatoes J, Ruchala K, et al. Image guidance for precise conformal radiotherapy[J]. Int J Radiat Oncol Biol Phys,2003,56:89-105. [2] Jaffray DA, Siewerdsen JH, Wong JW et al. Flat-panel cone beam computed tomography for image-guided radiation therapy[J].Int J Radiat Oncol Biol Phys,2002,53:1337-1349. [3] McBain CA, Henry AM, Sykes J, et al.X-ray volumetric imaging in image-guided radiotherapy:the new standard in on-treatment imaging[J].Int J Radiat Oncol Biol Phys,2006,64:625-634. [4] Elsen P, Pol E, Viergever M. Medical image matching:a review with classification[J]. IEEE Eng Med Biol,1993,12:26-39. [5] Guckenberger M, Meyer J, Vordermark D, et al.Magnitude and clinical relevance of translational and rotational patient set-up errors[J].Int J Radiat Oncol Biol Phys,2006,65:934-942. [6] Kupelian PA, Willoughby T, Mahadevan A, et al. Multi-institutional clinical experience with the Calypso system in localization and continuous real-time monitoring of the prostate gland during external radiotherapy[J]. Int J Radiat Oncol Biol Phys,2007,67:1088-1098. [7] Kim S, Jin H, Yang H, et al.A study on target positioning and its impact on dose variation in image-guided stereotactic body radiotherapy for the spine[J].Int J Radiat Oncol Bid Plays,2009,73:1574-1579. [8] Sharma SD, Dongre P, Mhatre V, et al. Evaluation of automated image registration algorithm for image-guided radiotherapy (IGRT)[J]. Austral Phys Eng Sci Med,2012,35:311-318. [9] 陈显毅.图像配准技术及其matlab编程实现[M].北京:电子工业出版社,2009:92-157. [10] Jason C, Chia L, Jian W, et al. Evaluation of radiation dose and positioning accuracy on X-ray volume imaging system for image-guided radiotherapy[J]. Nucl Instrum Meth Phys Res,2008,266:2203-2206. [11] 靳光华,朱金汉,林海磊,等.电子射野影像装置机械运动的位置误差研究[J].中华放射肿瘤学杂志,2013,22:76-79. [12] Rohr K, Stiehl H, Sprengel R, et al.Landmark-based elastic registration using approximating thin-plate splines[J].IEEE Trans Med Imaging,2001,20:526-534. [13] Khler FM, Boda-Heggemann J, Küpper B, et al. Phantom Measurements to quantify the accuracy of a commercially available cone-beam CT gray value matching algorithm using multiple fiducials[J]. Strahlenther Onkol,2009,185:49-55.