Analysis of the registration deviation between CT and CBCT images with different breathing rates and motion amplitudes in the state of free breathing
Wei Xing1, Xu Xin1, Bai Long2, Gong Pan2, Zhong Renming2
1 Division of Radio-chemotherapy for Oncology,West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education,Chengdu 610041, China; 2 Department of Radiotherapy Cancer Center, West China Hospital Sichuan University, Chengdu 610041, China
Abstract:Objective To quantify the registration deviation between CT and cone-beam computed tomography (CBCT) images with different breathing rates and motion amplitudes under free breathing state. Methods Using the QUASAR respiratory motion phantom, breathing rate and motion amplitude in the superior-inferior (SI) direction were changed to simulate free breathing motion under different states. The CT and CBCT images were acquired under different breathing rates and motion amplitudes, and static states, then the registration errors between CT and CBCT images and CT target volume were obtained and subject to quantitative analysis. Results Using the static CT image as a reference, the changes in breathing rate exerted no significant effect on the registration error when the motion amplitude was constant. When the motion amplitude was 0.5, 1.0, 2.0, and 3.0 cm, the average registration errors were (0.213±0.020), (0.351±0.009), (0.654±0.010), and (0.972±0.022) cm, respectively. When the motion amplitude was 0.5 and 1.0 cm, the CT target volume varied from -16.92% to 18.78%. When the motion amplitude was 2.0 and 3.0 cm, the CT target volume changed from -16.44% to 81.78%. Conclusions The changes in breathing rate under free-breathing state has no significant effect on the registration error between CBCT and CT images. When the motion amplitude is 0.5 and 1.0 cm, the CT target volume changes and the registration errors are small. When themotion amplitude is 2.0 and 3.0 cm, the registration errors exceed 0.5 cm and the CT target volume changes may exceed 20%.
Wei Xing,Xu Xin,Bai Long et al. Analysis of the registration deviation between CT and CBCT images with different breathing rates and motion amplitudes in the state of free breathing[J]. Chinese Journal of Radiation Oncology, 2022, 31(7): 628-632.
[1] Dawson LA, Sharpe MB.Image-guided radiotherapy: rationale, benefits, and limitations[J]. Lancet Oncol, 2006, 7(10):848-858. DOI: 10.1016/S1470-2045(06)70904-4. [2] Keall PJ, Mageras GS, Balter JM, et al.The management of respiratory motion in radiation oncology report of AAPM task group 76[J]. Med Phys, 2006, 33(10):3874-3900. DOI: 10.1118/1.2349696. [3] Zhong R, Wang J, Jiang X, et al.Hypofraction radiotherapy of liver tumor using cone beam computed tomography guidance combined with active breath control by long breath-holding[J]. Radiother Oncol, 2012, 104(3):379-385. DOI: 10.1016/j.radonc.2011.11.007. [4] Dhont J, Vandemeulebroucke J, Burghelea M, et al.The long- and short-term variability of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment[J]. Radiother Oncol, 2018, 126(2):339-346. DOI: 10.1016/j.radonc.2017.09.001. [5] Borm KJ, Oechsner M, Wiegandt M, et al.Moving targets in 4D-CTs versus MIP and AIP: comparison of patients data to phantom data[J]. BMC Cancer, 2018, 18(1):760. DOI: 10.1186/s12885-018-4647-4. [6] Chen GT, Kung JH, Beaudette KP.Artifacts in computed tomography scanning of moving objects[J]. Semin Radiat Oncol, 2004, 14(1):19-26. DOI: 10.1053/j.semradonc.2003.10.004. [7] Vedam SS, Keall PJ, Kini VR, et al.Acquiring a four-dimensional computed tomography dataset using an external respiratory signal[J]. Phys Med Biol, 2003, 48(1):45-62. DOI: 10.1088/0031-9155/48/1/304. [8] Chen GT, Kung JH, Beaudette KP.Artifacts in computed tomography scanning of moving objects[J]. Semin Radiat Oncol, 2004, 14(1):19-26. DOI: 10.1053/j.semradonc.2003.10.004. [9] Yoganathan SA, Maria Das KJ, Subramanian VS, et al.Investigating different computed tomography techniques for internal target volume definition[J]. J Cancer Res Ther, 2017, 13(6):994-999. DOI: 10.4103/0973-1482.220353. [10] Sweeney RA, Seubert B, Stark S, et al.Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors[J]. Radiat Oncol, 2012, 7:81. DOI: 10.1186/1748-717X-7-81. [11] 郎锦义,王培,吴大可,等.2015年中国大陆放疗基本情况调查研究[J].中华放射肿瘤学杂志,2016,25(06):541-545. DOI:10.3760/cma.j.issn.1001- 4221.2016.06.001. Lang JY, Wang P, Wu DK, et al.Investigation and research on the basic situation of radiotherapy in mainland China in 2015[J]. Chin J Radiat Oncol,2016,25(06):541-545. DOI:10.3760/cma.j.issn.1001-4221.2016.06.001. [12] 张烨, 易俊林, 姜威, 等. 2019年中国大陆地区放疗人员和设备基本情况调查研究[J]. 中国肿瘤, 2020, 29(05): 321-326. DOI:10.11735/j.issn.1004-0242.2020.05.A001. Zhang Y, Yi JL, Jiang W, et al.Investigation and research on the basic situation of radiotherapy personnel and equipment in mainland China in 2019[J]. China Cancer,2020,29(05):321-326. DOI:10.11735/j.issn.1004-0242.2020.05.A001. [13] van Herk M. Errors and margins in radiotherapy[J]. Semin Radiat Oncol, 2004, 14(1):52-64. DOI: 10.1053/j.semradonc. 2003.10.003. [14] 钟仁明, 柏森. 深吸气屏气技术在放疗中的运用[J]. 中华放射肿瘤学杂志, 2019, 28(11): 801-805. DOI: 10.3760/cma.j.issn.1004-4221.2019.11.001. Zhong RM, Bai S.Application of deep inspiration breath-hold technique in radiotherapy[J]. Chin J Radiat Oncol,2019,28(11):801-805. DOI: 10.3760/cma.j.issn.1004- 4221.2019.11.001. [15] Abdelnour AF, Nehmeh SA, Pan T, et al.Phase and amplitude binning for 4D-CT imaging[J]. Phys Med Biol, 2007, 52(12):3515-3529. DOI: 10.1088/0031-9155/52/12/012. [16] Han-Oh S, Hill C, Kang-Hsin Wang K, et al. Geometric reproducibility of fiducial markers and efficacy of a patient-specific margin design using deep inspiration breath hold for stereotactic body radiation therapy for pancreatic cancer[J]. Adv Radiat Oncol, 2021, 6(2):100655. DOI: 10.1016/j.adro.2021.100655.