Abstract:Objective To assess the feasibility of deformable image registration (DIR) in evaluating cumulative dose distribution of bladder and rectum of cervical cancer patients during helical tomotherapy (HT)-based intensity-modulated radiotherapy (IMRT) and high-dose-rate(HDR) brachytherapy. Methods Clinical data of 18 patients were retrospectively analyzed. Cumulative bladder/rectum D2cm3 and high-risk clinical target volume (HR-CTV) D90% parameters were calculated and compared to two direct parameter-adding methods with two registration-adding methods. Equivalent uniform dose (EUD group) and overlapping high dose (OHD group) methods were employed as parameter-adding methods. The registration-adding methods including rigid image registration (RIR group) and deformable image registration (DIR group) were adopted based on a commercial image registration software (MIM Maestro®). The dice similarity coefficient (DSC) and mean distance to agreement (MDA) were measured to assess the accuracy of RIR and DIR. Results In the EUD,OHD,RIR and DIR groups, the cumulative doses of bladder/rectum D2cm3 and HR-CTV D90% were (80.11±3.59)Gy (EQD2Gy),(82.23±3.46)Gy (EQD2Gy),(80.99±6.01)Gy (EQD2Gy) and (81.19±3.11)Gy (EQD2Gy)(P=0.516);(72.90±3.58)Gy (EQD2Gy),(73.83±4.28)Gy (EQD2Gy),(72.45±6.05)Gy (EQD2Gy) and (71.98±2.89)Gy (EQD2Gy)(P=0.625), and (85.51±2.91)Gy (EQD2Gy),(87.65±3.46)Gy (EQD2Gy),(81.53±3.63)Gy (EQD2Gy) and (85.81±3.30)Gy (EQD2Gy)(P<0.001), respectively. The mean DSC of the bladder, rectum and HR-CTV were 0.69, 0.65 and 0.63 with RIR;and 0.85, 0.81 and 0.78 with DIR (P<0.001), respectively. In DIR, the average MDA of bladder, rectum, and HR-CTV were 2.88, 2.48 and 2.66mm, respectively. Conclusions The cumulative DVH parameters among 4 groups show no significant difference in the bladder/rectum D2cm3/D0.2cm3. Since the DIR group achieves satisfactory volume matching of greater than 0.8 with DSC analysis, it can yield acceptable results for clinical application between HT IMRT and HDR BT for cervical cancer.
Wang Wei,Zhou Qing,Jiang Mawei. Application of deformable image registration in radiotherapy dose accumulation of helical tomotherapy combined with brachytherapy for cervical cancer[J]. Chinese Journal of Radiation Oncology, 2022, 31(1): 59-64.
[1] 周晖,刘昀昀,林仲秋.《2017NCCN宫颈癌临床实践指南》解读[J]. 中国实用妇科与产科杂志,2017, 33(1):100-107. DOI:10.19538/j.fk2017010125.
ZHOU H, LIU YY, LIN ZQ. Interpretation of the 2017 NCCN clinical practice guide for cervical cancer[J]. Chin J PractGynecol Obstet, 2017, 33(1):100-107. DOI:10.19538/j.fk2017010125.
[2] ICRU report 89:Prescribing, recording, and reporting brachytherapy for cancer of the cervix[J]. J ICRU, 2013, 13(1/2):NP. DOI:10.1093/jicru/ndw027.
[3] FlOWER E, DO V, SYKES J, et al. Deformable image registration for cervical cancer brachytherapy dose accumulation:Organ at risk dose volume histogram parameter reproducibility and anatomic position stability[J]. Brachytherapy, 2017, 16(2):387-392. DOI:10.1016/j.brachy.2016.12.006.
[4] KADOYA N, MIYASAKA Y, YAMAMOTO T, et al. Evaluation of rectum and bladder dose accumulation from external beam radiotherapy and brachytherapy for cervical cancer using two different deformable image registration techniques[J]. J Radiat Res, 2017, 58(5):720-728. DOI:10.1093/jrr/rrx028.
[5] TEO BK, BONNER-MILLAR LP, DING X, et al. Assessment of cumulative external beam and intracavitary brachytherapy organ doses in gynecologic cancers using deformable dose summation[J]. Radiother Oncol, 2015, 115(2):195-202. DOI:10.1016/j.radonc.2015.04.002.
[6] MACKIE TR, HOLMES T, SWERDLOFF S, et al. Tomotherapy:a new concept for the delivery of dynamic conformal radiotherapy[J]. Med Phys, 1993,20(6):1709-1719. DOI:10.1118/1.596958.
[7] CHITAPANARUX I, THARAVICHITUL E, NOBNOP W, et al. A comparative planning study of step-and-shoot IMRT versus helical tomotherapy for whole-pelvis irradiation in cervical cancer[J]. J Radiat Res, 2015, 56(3):539-545. DOI:10.1093/jrr/rrv004.
[8] PÖTTER R,HAIE-MEDER C, VAN LIMBERGEM E, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (Ⅱ):concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology[J]. Radiother Oncol,2006, 78(1):67-77. DOI:10.1016/j.radonc.2005.11.014.
[9] ASTRAHA M. Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation[J]. Med Phys, 2008,35(9):4161-4172. DOI:10.1118/1.2969065.
[10] VAN HEERDEN LE, HOUWLING AC, KOEDOODER K, et al. Structure-based deformable image registration:Added value for dose accumulation of external beam radiotherapy and brachytherapy in cervical cancer[J]. Radiother Oncol, 2017, 123(2):319-324.
DOI:10.1016/j.radonc.2017.03.015.
[11] ZOU KH, WARFIELD SK, BHARATHA A, et al. Statistical validation of image segmentation quality based on a spatial overlap index[J]. Acad Radiol, 2004, 11(2):178-189. DOI:10.1016/s1076-6332(03)00671-8.
[12] BROCK KK, MUTIC S, MCNUTT TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy:report of the AAPM radiation therapy committee task group No. 132[J]. Med Phys, 2017, 44(7):e43-e76. DOI:10.1002/mp.12256.
[13] ABE T, TAMAKI T, MAKINO S, et al. Assessing cumulative dose distributions in combined radiotherapy for cervical cancer using deformable image registration with pre-imaging preparations[J]. Radiat Oncol, 2014, 9:293. DOI:10.1186/s13014-014-0293-4.
[14] KIRBY N, CHUANG C, UEDA U, et al. The need for application-based adaptation of deformable image registration[J]. Med Phys, 2013, 40(1):011702. DOI:10.1118/1.4769114.
[15] LOI G, FUSELLA M, LANZI E, et al. Performance of commercially available deformable image registration platforms for contour propagation using patient-based computational phantoms:a multi-institutional study[J]. Med Phys, 2018, 45(2):748-757. DOI:10.1002/mp.12737.
[16] ANDERSEN ES, NOE KØ, Sørensen TS, et al. Simple DVH parameter addition as compared to deformable registration for bladder dose accumulation in cervix cancer brachytherapy[J]. Radiother Oncol, 2013, 107(1):52-57. DOI:10.1016/j.radonc.2013.01.013.
[17] BEAULIEU L, CARLSSON TEDGREN A, CAMIER JF, et al. Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism:current status and recommendations for clinical implementation[J]. Med Phys, 2012, 39(10):6208-6236. DOI:10.1118/1.4747264.
[18] KIRISITS C, RIVARD MJ, BALTAS D, et al. Review of clinical brachytherapy uncertainties:analysis guidelines of GEC-ESTRO and the AAPM[J]. Radiother Oncol, 2014, 110(1):199-212. DOI:10.1016/j.radonc.2013.11.002.
[19] RIGAUD B, SIMON A, CASTELLI J, et al. Deformable image registration for radiation therapy:principle, methods, applications and evaluation[J]. Acta Oncol, 2019, 58(9):1225-1237. DOI:10.1080/0284186X.2019.1620331.