[an error occurred while processing this directive]
中华放射肿瘤学杂志
   2025年4月7日 星期一     首 页 |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告合作  |  学术影响  |  收录情况  |  联系我们  |  English
中华放射肿瘤学杂志  2022, Vol. 31 Issue (4): 359-364    DOI: 10.3760/cma.j.cn113030-20210125-00043
物理·技术·生物 最新目录| 下期目录| 过刊浏览| 高级检索 [an error occurred while processing this directive]|[an error occurred while processing this directive]
基于全卷积网络U-Net宫颈癌近距离治疗三维剂量分布预测研究
向艺达1, 周剑良1, 白雪2, 王彬冰2, 单国平2
1南华大学核科学技术学院,衡阳 421000;
2中国科学院大学附属肿瘤医院 浙江省肿瘤医院放射物理室,杭州 310022
Study of three-dimensional dose distribution prediction in cervical cancer brachytherapy based on U-Net fully convolutional network
Xiang Yida1, Zhou Jianliang1, Bai Xue2, Wang Binbing2, Shan Guoping2
1School of Nuclear Science and Technology, University of South China, Hengyang 421000, China;
2Department of Radiation Physics, Zhejiang Cancer Hospital, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou 310022, China
全文: PDF (0 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      背景资料
摘要 目的 基于全卷积网络U-Net预测宫颈癌近距离治疗(BT)感兴趣区(ROI)三维剂量分布,并评估其预测精度。方法 首先选取 100例宫颈癌腔内结合组织间插植病例作为整个研究数据集,并将其划分为训练集(72例)、验证集(8例)、测试集(20例);然后利用U-Net建立模型,将是否包含宫腔管及插针作为区分因素训练两个模型;最后对 20例测试集病例进行预测,并进行对比分析。模型的性能通过ΔD90%、ΔD2cm3以及平均绝对离差共同评估。结果 包含与未包宫腔管与插植针的模型相比,直肠的ΔD2cm3上升了(16.83±1.82)cGy (P<0.05),其余ROI的ΔD90%或ΔD2cm3均相近(均 P>0.05);高危靶区、直肠、乙状结肠、小肠、膀胱平均绝对离差分别上升了(11.96±3.78)、(11.43±0.54)、(24.08±1.65)、(17.04±7.17)、(9.52±4.35)cGy (均 P<0.05);中危靶区的下降了(120.85±29.78)cGy (P<0.05);6个ROI的平均绝对离差的平均值下降了(7.8±53)cGy (P<0.05),更接近实际计划。结论 利用全卷积网络U-Net可以实现宫颈癌患者BT的三维剂量分布预测;结合宫腔管与插植针作为输入参数,比单一使用ROI结构作为输入能得到更准确的预测结果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
向艺达
周剑良
白雪
王彬冰
单国平
关键词 全卷积网络三维剂量分布预测宫颈肿瘤/近距离疗法    
AbstractObjective Topredict the three-dimensional dose distribution of regions of interest (ROI) with brachytherapy for cervical cancer based on U-Net fully convolutional network, and evaluate the accuracy of prediction model. Methods First, 100 cases of cervical cancer intracavity combined with interstitial implantation were selected as the entire research data set, and divided into the training set (n=72), validation set (n=8), and test set (n=20). Then the U-Net was used to construct two models based on whether the uterine tandem and the implantation needles were included as the distinguishing factors. Finally, dose distribution of 20 cases in the test set were predicted using the trained model, and comparative analysis was performed. The performance of the model was jointly evaluated byΔD90%,ΔD2cm3and the mean absolute deviation (MAD). Results Compared with the model without the uterine tandem and the implantation needles,theΔD2cm3of the rectum was increased by (16.83±1.82)cGy (P<0.05), andtheΔD90% or ΔD2cm3of the other ROI were not different significantly (all P>0.05). The MAD of the high-risk clinical target volume, rectum, sigmoid, small bowel, and bladder was increased by (11.96±3.78)cGy,(11.43±0.54)cGy,(24.08±1.65)cGy,(17.04±7.17)cGy and (9.52±4.35)cGy, respectively (all P<0.05). The MAD of the intermediate-risk clinical target volume was decreased by (120.85±29.78)cGy (P<0.05). The mean value of MAD for all ROI was decreased by (7.8±53)cGy (P<0.05), which was closer to the actual plan. Conclusions U-Net fully convolutional network can be used to predict three-dimensional dose distribution of patients with cervical cancer undergoing brachytherapy. Combining the uterine tube with the implantation needles as the input parameters yields more accurate predictions than a single use of the ROI structure as the input.
Key wordsFully convolutional network    Three-dimensional dose distribution prediction    Cervical neoplasm/brachytherapy   
收稿日期: 2021-01-25     
基金资助:国家自然科学基金(12005190)
通讯作者: 周剑良,Email:103327341099@189.com   
引用本文:   
向艺达,周剑良,白雪等. 基于全卷积网络U-Net宫颈癌近距离治疗三维剂量分布预测研究[J]. 中华放射肿瘤学杂志, 2022, 31(4): 359-364.
Xiang Yida,Zhou Jianliang,Bai Xue et al. Study of three-dimensional dose distribution prediction in cervical cancer brachytherapy based on U-Net fully convolutional network[J]. Chinese Journal of Radiation Oncology, 2022, 31(4): 359-364.
链接本文:  
http://journal12.magtechjournal.com/Jweb_fszlx/CN/10.3760/cma.j.cn113030-20210125-00043     或     http://journal12.magtechjournal.com/Jweb_fszlx/CN/Y2022/V31/I4/359
京公网安备11010502022167号
版权所有 © 2010《中华放射肿瘤学杂志》编辑部
地址:北京朝阳区潘学园南里17号 中国医学科学院肿瘤医院(100021)
电话:010-67700737,87788294 Email: cjron@cmaph.org
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:Support@magtech.com.cn